The December 2022 issue of IEEE Spectrum is here!

Close bar

Intel Talks Thunderbolt 3

One cable to rule them all, and it’ll be optical in 2016

4 min read
Photo-illustration: Intel
Photo-illustration: Intel

Intel is gearing up for what it sees as the biggest revolution since the introduction of USB. In June, the company finalized the development of Thunderbolt 3, a new chip, protocol, and physical connection that Intel hopes will replace all the existing cables we use to connect peripheral devices and allow us to go beyond with some new applications.

Shortly thereafter, we had a chance to sit down with Shahaf Kieselstein, Intel’s general manager for the client connectivity division (and vice president of the client computing group), who headed the development of Thunderbolt 3.

Thunderbolt has been in development at Intel Labs for more than five years and has its origins in the Light Peak project, which was developed by Intel with Apple. As the project moved from the lab to the market, the initial optical fiber of Light Peak gave way to the more traditional copper wiring in the first-generation Thunderbolt, which hit the market back in 2011.

According to Kieselstein, the vision behind Thunderbolt 3 was to create one cable that allows users to connect every type of peripheral to their computers, and to do so with as much bandwidth but as little cabling as possible. More specifically, what the company was trying to do with Thunderbolt 3 was to develop a high speed I/O over a single wire for users who create 4K video content, make it as power efficient as a USB, and keep product cost low enough for use with a client platform such as a laptop (as opposed to a server). Kieselstein wasn’t willing to go into the specifics of the “secret sauce” that allowed Intel to achieve these goals, but he was willing to talk about the amount of effort: two years of work by a relatively small team of about 100 developers.

While USB does a very good job for many types of peripherals, devices such as displays are limited in their functionality, both in terms of resolution and latency, when connected through a USB. In fact, over the past decade or so, most displays have been using either HDMI or DisplayPort in order to reach higher and higher resolutions and faster refresh rates.

While USB, HDMI, and DisplayPort all play a part in today’s digital ecosystem, the lack of a single standard for data and video has forced manufacturers to equip new devices with multiple types of connectors. This takes up space, increases costs, compels users to connect more cables, and in some cases, to use adapters. With Thunderbolt 3, Intel is looking to make all these issues go away while allowing some new and exciting functions that were not possible until now.

For example, Thunderbolt 3 has a 40-gigabit-per-second bus that’s four times as fast as the new USB 3.1 and twice as fast as the previous generation of Thunderbolt. What can you do with so much bandwidth? Well, for starters, you can run two 4K 60-hertz monitors at the same time using Thunderbolt’s built-in support for the DisplayPort 1.2 protocol. (Interestingly, Intel did not include support for the newer DisplayPort 1.3, which can support 4K 3-D—and to some degree even future 8K resolutions—with a single cable, but Kieselstein did not say why.)

You also have four lanes of support for the computer expansion bus PCI Express Gen 3 built in. This allows users to connect practically any internal PCI Express card externally, leading to some interesting use scenarios. One of the most exciting, according to Kieselstein, is connecting a graphics dock to a thin, light mobile computer—essentially bringing desktop-level performance to small laptops. Intel already partnered with AMD (and Nvidia might join in the future) to create two types of docks: a Thunderbolt graphics dock for a mobile graphics unit (which is what we were shown driving two 4K 60-Hz displays when we visited Intel) and a much larger Thunderbolt card chassis, which will house a full desktop GPU for heavy-duty games and other graphics-intensive tasks.

Having fast external PCI Express support allows another interesting feature that Intel demonstrated: ultrafast external storage. By using NVM Express—a specification for attaching solid-state drives to PCI Express—users will be able to connect these new drives to any device (including future Thunderbolt 3–supported laptops) with up to four times the transfer speed of the fastest SATA drives around.

Both the external storage and graphics applications of Thunderbolt 3 point to a more general trend, which Intel emphasized in our conversation—smart docking stations. Thunderbolt 3 docking stations, which will likely be among the first consumer devices to reach the market, will show off yet another of the protocol’s benefits: enhanced power delivery.

Using a Thunderbolt 3 cable with a docking station connected to AC power, a laptop can have a fast data connection through USB 3.1, connect PCI Express devices externally, and drive ultrahigh-resolution monitors using dual DisplayPort 1.2. In addition, the setup can charge the laptop (at up to 100 watts), as well as supply up to 15 watts to external devices that don’t have their own power sources. (That’s up from about 10 W in Thunderbolt 2.)

Previous iterations of the Thunderbolt were costly because they required an “active” cable, which has a chip in it to boost performance. The move to a USB Type-C connector, plus the ability of Thunderbolt 3 to work with both fast, active cables (40 Gb/s) and less-expensive, passive cables (up to 20 Gb/s), means that cost will be less of an issue this time around.

An optical version of Thunderbolt 3, which will extend its reach to 60 meters from today’s 2 meters, is expected to arrive in mid-2016.

On top of graphics, storage, power, and USB, Thunderbolt 3 will also offer the ability to daisy-chain up to six devices as well as to emulate a 10-gigabit Ethernet connection. That latter capability will let users connect two Thunderbolt 3–supported computers directly in order to transfer large amounts of data quickly.

At the moment, the Thunderbolt 3 chip, known as Alpine Ridge, isn’t part of Intel’s CPU. But Kieselstein says that given enough demand for its native USB 3.1 host controller and the enhanced storage, graphics, power, and data transfer capabilities it provides, adding Thunderbolt directly to a computer’s system-on-a-chip will be possible. (The chip, by the way, is manufactured by foundry giant and sometime Intel rival TSMC.)  

For desktop computers lacking Alpine Ridge, Kieselstein says that Intel is developing an add-on PCI Express card with Thunderbolt 3 support, just as it did with previous versions of Thunderbolt.

The first Thunderbolt 3–enabled products (mostly laptop computers featuring Alpine Ridge chipsets) are already here, but, according to Intel, the full range of products based on the new technology—including the aforementioned connectors and docking stations—will hit the market after the new year.

The Conversation (0)

This Free-Space Optics System Could Boost Space Comms

A 100-gigabit-per-second ground-to-drone link achieved with laser optics

4 min read
Left, a telescope pointed at the sky. Right, a drone in flight.

The researchers are developing a PlaneWave Instruments CDK-700 telescope as a purpose-built optical communications ground station [left]. The drone [right] used in test flights includes four green LED beacons to aid acquisition and tracking.

International Centre for Radio Astronomy Research

Optical fiber has long since replaced copper wiring in core information networks. But that’s not the case for free-space optical (FSO) communications using optical lasers to transmit data through the air. Despite FSO having the potential to provide orders of magnitude more data capacity compared with that of the traditional radio-frequency communications space missions currently rely on, the technology has been stuck on the launch pad because of atmospheric interference that can absorb and scatter the signals, as well as the strict acquisition and tracking requirements for communicating between ground stations and orbiting satellites.

But now researchers from the International Centre for Radio Astronomy Research, in Western Australia, have developed a coherent FSO link operating at 1,550 nanometers across a turbulent atmosphere between an optical ground terminal and a retroreflector mounted on an airborne drone. Their findings were published this October in Scientific Reports.

Keep Reading ↓Show less

Paying Tribute to 1997 IEEE President Charles K. Alexander

The Life Fellow was a professor at Cleveland State University

4 min read
portrait of man smiling against a light background
The Alexander Family

Charles K. Alexander, 1997 IEEE president, died on 17 October at the age of 79.

The active volunteer held many high-level positions throughout the organization, including 1991–1992 IEEE Region 2 director. He was also the 1993 vice president of the IEEE United States Activities Board (now IEEE-USA).

Keep Reading ↓Show less

Learn How Global Configuration Management and IBM CLM Work Together

In this presentation we will build the case for component-based requirements management

2 min read

This is a sponsored article brought to you by 321 Gang.

To fully support Requirements Management (RM) best practices, a tool needs to support traceability, versioning, reuse, and Product Line Engineering (PLE). This is especially true when designing large complex systems or systems that follow standards and regulations. Most modern requirement tools do a decent job of capturing requirements and related metadata. Some tools also support rudimentary mechanisms for baselining and traceability capabilities (“linking” requirements). The earlier versions of IBM DOORS Next supported a rich configurable traceability and even a rudimentary form of reuse. DOORS Next became a complete solution for managing requirements a few years ago when IBM invented and implemented Global Configuration Management (GCM) as part of its Engineering Lifecycle Management (ELM, formerly known as Collaborative Lifecycle Management or simply CLM) suite of integrated tools. On the surface, it seems that GCM just provides versioning capability, but it is so much more than that. GCM arms product/system development organizations with support for advanced requirement reuse, traceability that supports versioning, release management and variant management. It is also possible to manage collections of related Application Lifecycle Management (ALM) and Systems Engineering artifacts in a single configuration.

Keep Reading ↓Show less