Close

Yujin Robot Launches 3D Lidar for Service Robots and Smart Factories

POST COVID-19, Future-Ready Technology and Products for AGVs/AMRs, Service Robots, and Factories

1 min read

Recently Yujin Robot launched a new 3D LiDAR for indoor service robot, AGVs/AMRs and smart factory. The YRL3 series is a line of precise laser sensors for vertical and horizontal scanning to detect environments or objects. The Yujin Robot YRL3 series LiDAR is designed for indoor applications and utilizes an innovative 3D scanning LiDAR for a 270°(Horizontal) x 90°(vertical) dynamic field of view as a single channel. The fundamental principle is based on direct ToF (Time of Flight) and designed to measure distances towards surroundings. YRL3 collect useful data including ranges, angles, intensities and Cartesian coordinates (x,y,z). Real-time vertical right-angle adjustment is possible and supports powerful S/W package for autonomous driving devices.


“In recent years, our product lineup expanded to include models for the Fourth Industrial Revolution," shares the marketing team of Yujin Robot. These models namely are Kobuki, the ROS reference research robot platform used by robotics research labs around the world, the Yujin LiDAR range-finding scanning sensor for LiDAR-based autonomous driving, AMS solution (Autonomous Mobility Solution) for customized autonomous driving. The company continues to push the boundaries of robotics and artificial intelligence, developing game-changing autonomous solutions that give companies around the world an edge over the competition.

img YUJIN 3D LiDAR, Now Shipping! Indoor 3D LiDAR for AGVs/AMRs, Service Robots, and Factories Photo: Yujin

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less