Inexpensive, Durable Plastic Hands Let Robots Get a Grip

This rubber-jointed hand can pick up a telephone and use a drill

13 min read
Inexpensive, Durable Plastic Hands Let Robots Get a Grip
Photo: iRobot

Video: Ian Chant and Celia Gorman; Footage: iRobot

The human hand is one of nature’s marvels—and a stupendous challenge to engineers who would replicate it. It’s an intricate assemblage with 29 flexible joints and thousands of specialized nerve endings, overseen by a control system so sensitive that it can instantly indicate how hot an object is, how smooth its surface is, and even how firmly it should be grasped.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Robo-Ostrich Sprints to 100m World Record

Oregon State University’s Cassie is fastest bipedal robot ever to run the hundred meter dash

2 min read
A robot with two orange ostrich-like legs and no torso sprints along a running track

For a robot that shares a leg design with the fastest running bird on the planet, we haven’t ever really gotten a sense of how fast Agility Robotics’ Cassie is actually able to move. Oregon State University’s Cassie successfully ran a 5k last year, but it was the sort of gait that we’ve come to expect from humanoid robots—more of a jog, really, with measured steps that didn’t inspire a lot of confidence in higher speeds. Turns out, Cassie was just holding back, because she’s just sprinted her way to a Guinness World Record for fastest 100m run by a bipedal robot.

Keep Reading ↓Show less

Machine Learning Will Tackle Quantum Problems, Too

ML algorithms take on quantum-computer workloads till the qubits come to town

3 min read
Vector art of a head with circuits examining a quantum symbol
Getty Images

Quantum computers may prove far more powerful than any conventional supercomputer when it comes to performing the kinds of complex physics and chemistry simulations that could lead to next-generation batteries or new drugs. However, it may take many years before practical and widespread quantum computing becomes reality.

Now a new study finds that machine learning, which now powers computer vision, speech recognition, and more, can also prove significantly better than regular computers at the kinds of tasks at which quantum computers excel. These findings suggest that machine learning may help tackle key quantum problems in the era before quantum computers finally arrive.

Keep Reading ↓Show less
Technology Innovation Institute

Autonomous systems sit at the intersection of AI, IoT, cloud architectures, and agile software development practices. Various systems are becoming prominent, such as unmanned drones, self-driving cars, automated warehouses, and managing capabilities in smart cities. Little attention has been paid to securing autonomous systems as systems composed of multiple automated components. Various patchwork efforts have focused on individual components.

Cloud services are starting to adopt a Zero Trust approach for securing the chain of trust that might traverse multiple systems. It has become imperative to extend a Zero Trust architecture to systems of autonomous systems to protect not only drones, but also industrial equipment, supply chain automation, and smart cities.