IceCube: The Polar Particle Hunter

Searching Antarctica for the frozen paths of cosmic-ray neutrinos

11 min read
Particle detectors are lowered into a 2.5-kilometer-deep hole drilled into the Antarctic ice near South Pole Station.
Photo: NSF

No commercial airline flies to the South Pole. Instead, I started my trip there on a U.S. Air Force C-17 transport, which traveled from Christchurch, New Zealand, to McMurdo Station, a U.S. Antarctic research center located on the southern tip of Ross Island. I stayed at McMurdo overnight before boarding a smaller plane, an LC-130 turboprop, for the rest of the journey. After a 3-hour flight over the Transantarctic Mountains, my plane landed on skis at the bottom of the world.

Stepping off the LC-130, I found the cold, thin air a real shock—the South Pole is more than 2800 meters above sea level, and the temperature was –30 °C. I staggered to the shelter of South Pole Station, from which, after suiting up in 10 kilograms of extreme-cold-weather gear, I walked to the nearby drilling camp. The goal of this operation was to bore holes 60 centimeters in diameter, each reaching about 2.5 kilometers below the surface, which is deeper than the Grand Canyon.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Startup Makes It Easier to Detect Fires With IoT and Flir Cameras

The system employs predictive analytics and AI

3 min read
A tablet computer shows blueprints overlaid with thermal imagery.

MoviTHERM’s iEFD system’s online dashboard shows a diagram of the interconnected sensors, instruments, Flir cameras, and other devices that are monitoring a facility.

MoviTHERM

Fires at recycling sorting facilities, ignited by combustible materials in the waste stream, can cause millions of dollars in damage, injuring workers and first responders and contaminating the air.

Detecting the blazes early is key to preventing them from getting out of control.

Keep Reading ↓ Show less

Mayo Clinic Researchers Pump Up Wearable ECG Functions With AI

Single-lead ECG can detect ventricular dysfunction

3 min read
A closeup image of a person about to touch an apple watch screen showing a health app with their finger.
Istockphoto

Mayo Clinic researchers have developed an artificial-intelligence algorithm that can detect weak heart-pump functioning from a single-lead electrocardiogram (ECG) on the Apple Watch. Early results indicate that the ECG is as accurate as a medically ordered treadmill stress test but could be performed anywhere, the researchers say.

The single-lead AI algorithm was adapted from an existing algorithm that works by analyzing ventricular pumping data from a 12-lead ECG already in clinical use under an Emergency Use Authorization from the U.S. Food and Drug Administration (FDA).

Keep Reading ↓ Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓ Show less