The February 2023 issue of IEEE Spectrum is here!

Close bar

IceCube: The Polar Particle Hunter

Searching Antarctica for the frozen paths of cosmic-ray neutrinos

11 min read
Particle detectors are lowered into a 2.5-kilometer-deep hole drilled into the Antarctic ice near South Pole Station.
Photo: NSF

No commercial airline flies to the South Pole. Instead, I started my trip there on a U.S. Air Force C-17 transport, which traveled from Christchurch, New Zealand, to McMurdo Station, a U.S. Antarctic research center located on the southern tip of Ross Island. I stayed at McMurdo overnight before boarding a smaller plane, an LC-130 turboprop, for the rest of the journey. After a 3-hour flight over the Transantarctic Mountains, my plane landed on skis at the bottom of the world.

Stepping off the LC-130, I found the cold, thin air a real shock—the South Pole is more than 2800 meters above sea level, and the temperature was –30 °C. I staggered to the shelter of South Pole Station, from which, after suiting up in 10 kilograms of extreme-cold-weather gear, I walked to the nearby drilling camp. The goal of this operation was to bore holes 60 centimeters in diameter, each reaching about 2.5 kilometers below the surface, which is deeper than the Grand Canyon.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Caltech Team Launches Experimental Space-Based Solar Array

The satellite will test some of the tech needed to wirelessly beam power from orbit

4 min read
A lightweight gold-colored square frame for a solar power array, seen flying in space with Earth in background.

Artist's conception of Caltech's Space Solar Power Demonstrator in Earth orbit.

Caltech

For about as long as engineers have talked about beaming solar power to Earth from space, they’ve had to caution that it was an idea unlikely to become real anytime soon. Elaborate designs for orbiting solar farms have circulated for decades—but since photovoltaic cells were inefficient, any arrays would need to be the size of cities. The plans got no closer to space than the upper shelves of libraries.

That’s beginning to change. Right now, in a sun-synchronous orbit about 525 kilometers overhead, there is a small experimental satellite called the Space Solar Power Demonstrator One (SSPD-1 for short). It was designed and built by a team at the California Institute of Technology, funded by donations from the California real estate developer Donald Bren, and launched on 3 January—among 113 other small payloads—on a SpaceX Falcon 9 rocket.

“To the best of our knowledge, this would be the first demonstration of actual power transfer in space, of wireless power transfer,” says Ali Hajimiri, a professor of electrical engineering at Caltech and a codirector of the program behind SSPD-1, the Space Solar Power Project.

Keep Reading ↓Show less

Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

Additive manufacturing processes can provide rapid and customizable production of high-quality components

7 min read
Fine-Tuning the Factory: Simulation App Helps Optimize Additive Manufacturing Facility

An example of a part produced through the metal powder bed fusion process.

This sponsored article is brought to you by COMSOL.

History teaches that the Industrial Revolution began in England in the mid-18th century. While that era of sooty foundries and mills is long past, manufacturing remains essential — and challenging. One promising way to meet modern industrial challenges is by using additive manufacturing (AM) processes, such as powder bed fusion and other emerging techniques. To fulfill its promise of rapid, precise, and customizable production, AM demands more than just a retooling of factory equipment; it also calls for new approaches to factory operation and management.

Keep Reading ↓Show less
{"imageShortcodeIds":["32338242"]}