In poker parlance it would seem that IBM has gone “all in” with graphene replacing silicon in the chips of the future.

The latest news in the graphene story is that IBM has built an integrated circuit out of the wonder material. The research, which was published in the magazine Science last week, describes IBM’s success at building a “wafer-scale graphene circuit…in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer.”

According to the Spectrum article cited above, it took researchers a year of engineering work to sort how to connect the graphene to the other metallic elements of the circuit and how to perform lithography on it without damaging it.

To overcome the latter challenge the Spectrum article intriguingly says, “One way the team addressed the damage problem was to grow the graphene on a silicon-carbide wafer, then coat it with a common polymer, PMMA, and a resist that was sensitive to jets of electrons used in electron beam lithography.”

I am assuming then that there were other ways tested but this turned out to be the best (I don’t have a Science subscription, so I don’t know if other methods were in fact tried.).

Like anyone who follows to any extent developments in material science around chips I have become somewhat mesmerized at the developments that have been coming fast and furious around graphene.

But meanwhile some interesting developments are occurring with other materials that come in two dimensions like graphene but have a natural band gap. While the molybdenite is not being positioned as a direct competitor with graphene in the post-silicon battlefield, one has to wonder whether there are other minerals out there in addition to molybdenite that could fit the bill and push graphene to the side.

Not that there is such a competitor out there mind you, but once upon a time not too long ago carbon nanotubes were the new wonder material that would someday replace silicon. If I were a betting man, I would be looking to hedge my wager somewhat.

The Conversation (0)

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}