The August 2022 issue of IEEE Spectrum is here!

Close bar

In poker parlance it would seem that IBM has gone “all in” with graphene replacing silicon in the chips of the future.

The latest news in the graphene story is that IBM has built an integrated circuit out of the wonder material. The research, which was published in the magazine Science last week, describes IBM’s success at building a “wafer-scale graphene circuit…in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer.”

According to the Spectrum article cited above, it took researchers a year of engineering work to sort how to connect the graphene to the other metallic elements of the circuit and how to perform lithography on it without damaging it.

To overcome the latter challenge the Spectrum article intriguingly says, “One way the team addressed the damage problem was to grow the graphene on a silicon-carbide wafer, then coat it with a common polymer, PMMA, and a resist that was sensitive to jets of electrons used in electron beam lithography.”

I am assuming then that there were other ways tested but this turned out to be the best (I don’t have a Science subscription, so I don’t know if other methods were in fact tried.).

Like anyone who follows to any extent developments in material science around chips I have become somewhat mesmerized at the developments that have been coming fast and furious around graphene.

But meanwhile some interesting developments are occurring with other materials that come in two dimensions like graphene but have a natural band gap. While the molybdenite is not being positioned as a direct competitor with graphene in the post-silicon battlefield, one has to wonder whether there are other minerals out there in addition to molybdenite that could fit the bill and push graphene to the side.

Not that there is such a competitor out there mind you, but once upon a time not too long ago carbon nanotubes were the new wonder material that would someday replace silicon. If I were a betting man, I would be looking to hedge my wager somewhat.

The Conversation (0)

The First Million-Transistor Chip: the Engineers’ Story

Intel’s i860 RISC chip was a graphics powerhouse

21 min read
Twenty people crowd into a cubicle, the man in the center seated holding a silicon wafer full of chips

Intel's million-transistor chip development team

In San Francisco on Feb. 27, 1989, Intel Corp., Santa Clara, Calif., startled the world of high technology by presenting the first ever 1-million-transistor microprocessor, which was also the company’s first such chip to use a reduced instruction set.

The number of transistors alone marks a huge leap upward: Intel’s previous microprocessor, the 80386, has only 275,000 of them. But this long-deferred move into the booming market in reduced-instruction-set computing (RISC) was more of a shock, in part because it broke with Intel’s tradition of compatibility with earlier processors—and not least because after three well-guarded years in development the chip came as a complete surprise. Now designated the i860, it entered development in 1986 about the same time as the 80486, the yet-to-be-introduced successor to Intel’s highly regarded 80286 and 80386. The two chips have about the same area and use the same 1-micrometer CMOS technology then under development at the company’s systems production and manufacturing plant in Hillsboro, Ore. But with the i860, then code-named the N10, the company planned a revolution.

Keep Reading ↓Show less