The August 2022 issue of IEEE Spectrum is here!

Close bar

"Hydricity" Would Couple Solar Thermal and Hydrogen Power

Sun-to-electricity efficiency of the system could approach 35 percent

2 min read
"Hydricity" Would Couple Solar Thermal and Hydrogen Power
Photos: Getty Images

Solar heat could help generate both electricity and hydrogen fuel at the same time in a system that scientists in Switzerland and the United States call "hydricity." Such a system could supply electricity round-the-clock with an overall efficiency better than many photovoltaic cells, researchers add.

There are two ways solar energy is used to generate electricity. Photovoltaic cells directly convert sunlight to electricity, while solar thermal power plants—also known as concentrating solar power systems—focus sunlight with mirrors, heating water and producing high-pressure steam that drives turbines.

Photovoltaic cells only absorb a portion of the solar spectrum, but they can generate electricity from both direct and diffuse sunlight. Solar thermal power plants can use more wavelengths of the solar spectrum, but they can only operate in direct sunlight, limiting them to sun-rich areas. Moreover, the highest conversion efficiencies reported yet for solar thermal power plants are significantly less than those for photovoltaic cells.

Scientists now suggest that coupling solar thermal power plants with hydrogen fuel production facilities could result in "hydricity" systems competitive with photovoltaic designs.

Today’s solar thermal power plants operate at temperatures of up to roughly 625 degrees C. However, the researchers noted that solar thermal power plants are more efficient at higher temperatures. What’s more, when they reach temperatures above 725 degrees C they can split water into it’s constituents, hydrogen and oxygen.

An integrated "hydricity" system would produce both steam for generating electricity and hydrogen for storing energy. And each makes the other more efficient. Set to produce hydrogen alone, its production efficiency approaches 50 percent, the researchers claim. This is because the high-pressure steam the system generates can easily be used to pressurize hydrogen. The substantial amount of power needed to compress hydrogen fuel for later transport and use is often neglected when it comes to calculating hydrogen production efficiency.

Furthermore, this new solar thermal energy design can generate electricity with standalone efficiencies approaching up to an unprecedented 46 percent, researchers say. This is because the high-temperature steam leaving high-pressure turbines can run a succession of lower-pressure turbines, helping make the most of the solar thermal energy the system collects.

Moreover, the hydrogen fuel the system generates can be burned to  generate electricity after nightfall, for round-the-clock power. The researchers say the efficiency of this hydrogen-to-electricity system could reach up to 70 percent, comparable to the highest reported hydrogen fuel cell efficiencies.

Altogether, the researchers say the sun-to-electricity efficiency of hydricity, averaged over a 24-hour cycle, might approach roughly 35 percent, nearly the efficiency attained using the best multijunction photovoltaic cells combined with batteries. In addition, they note that the hydrogen fuel the system produces could find use in transportation, chemical production, and other industries. Finally, unlike batteries, stored hydrogen neither discharges over time nor degrades with repeated use.

The scientists at Purdue University in West Lafayette, Ind., and the Federal Polytechnic School of Lausanne in Switzerland detailed their findings online 14 December in the journal Proceedings of the National Academy of Sciences.

The Conversation (0)

This Dutch City Is Road-Testing Vehicle-to-Grid Tech

Utrecht leads the world in using EVs for grid storage

10 min read
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less