The December 2022 issue of IEEE Spectrum is here!

Close bar

How We Won Gold in the Cyborg Olympics’ Brain Race

With our brain-computer interface, paralyzed athletes sped their avatars across the finish line

9 min read
Photo of Eric Anselmo wearing the EEG cap.
Photo: Nicola Pitaro/ETH Zürich

In October 2016, inside a sold-out arena in Zurich, a man named Numa Poujouly steered his wheelchair up to the central podium. As the Swiss national anthem played, organizers of the world’s first cyborg Olympics hung a gold medal around Poujouly’s neck. The 30-year-old, who became paralyzed after a bicycle accident in his teens, had triumphed in the tournament’s most futuristic event: a video-game-like race in which the competitors controlled their speeding avatars with just their minds.

Keep reading...Show less
{"imageShortcodeIds":[]}

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Rory Cooper’s Wheelchair Tech Makes the World More Accessible

He has introduced customized controls and builds wheelchairs for rough terrain

6 min read
portrait of a man in a navy blue polo with greenery in the background
Abigail Albright

For more than 25 years, Rory Cooper has been developing technology to improve the lives of people with disabilities.

Cooper began his work after a spinal cord injury in 1980 left him paralyzed from the waist down. First he modified the back brace he was required to wear. He then turned to building a better wheelchair and came up with an electric-powered version that helped its user stand up. He eventually discovered biomedical engineering and was inspired to focus his career on developing assistive technology. His inventions have helped countless wheelchair users get around with more ease and comfort.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Intel’s Take on the Next Wave of Moore’s Law

Ann B. Kelleher explains what's new 75 years after the transistor's invention

4 min read
image of a black and gold computer chip against a black background

Intel's Ponte Vecchio processor

Intel

The next wave of Moore’s Law will rely on a developing concept called system technology co-optimization, Ann B. Kelleher, general manager of technology development at Intel told IEEE Spectrum in an interview ahead of her plenary talk at the 2022 IEEE Electron Device Meeting.

“Moore’s Law is about increasing the integration of functions,” says Kelleher. “As we look forward into the next 10 to 20 years, there’s a pipeline full of innovation” that will continue the cadence of improved products every two years. That path includes the usual continued improvements in semiconductor processes and design, but system technology co-optimization (STCO) will make the biggest difference.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Tools and Strategies for 3D EM Modeling and Design of Microwave Imaging Systems for Medical Applications

Learn how WiPL-D software suite can be efficiently used for biomedical applications

1 min read

Microwave Imaging (MWI) has attracted massive attention in the medical research field over the last decade due to its standout qualities of utilizing harmless non-ionizing radiation and affordable components. At present, conventional technologies (CT and MRI) which provide high-resolution images, still have several limitations such as their long examination time, non-portability, high cost, and also ionizing radiation.

MWI has several potential applications and one of the promising areas is malignant tissue detection as a contrast of permittivity with respect to healthy tissues inside the human body. In order to detect malignancy using MWI at different organs, particular imaging scenarios need to be considered.

Keep Reading ↓Show less