How IBM Got Brainlike Efficiency From the TrueNorth Chip

TrueNorth takes a big step toward using the brain’s architecture to reduce computing’s power consumption

3 min read
How IBM Got Brainlike Efficiency From the TrueNorth Chip
Photo: IBM

Neuromorphic computer chips meant to mimic the neural network architecture of biological brains have generally fallen short of their wetware counterparts in efficiency—a crucial factor that has limited practical applications for such chips. That could be changing. At a power density of just 20 milliwatts per square centimeter, IBM’s new brain-inspired chip comes tantalizingly close to such wetware efficiency. The hope is that it could bring brainlike intelligence to the sensors of smartphones, smart cars, and—if IBM has its way—everything else.

The latest IBM neurosynaptic computer chip, called TrueNorth, consists of 1 million programmable neurons and 256 million programmable synapses conveying signals between the digital neurons. Each of the chip’s 4,096 neurosynaptic cores includes the entire computing package: memory, computation, and communication. Such architecture helps to bypass the bottleneck in traditional von Neumann computing, where program instructions and operation data cannot pass through the same route simultaneously.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Future of Deep Learning Is Photonic

Computing with light could slash the energy needs of neural networks

10 min read

This computer rendering depicts the pattern on a photonic chip that the author and his colleagues have devised for performing neural-network calculations using light.

Alexander Sludds
DarkBlue1

Think of the many tasks to which computers are being applied that in the not-so-distant past required human intuition. Computers routinely identify objects in images, transcribe speech, translate between languages, diagnose medical conditions, play complex games, and drive cars.

The technique that has empowered these stunning developments is called deep learning, a term that refers to mathematical models known as artificial neural networks. Deep learning is a subfield of machine learning, a branch of computer science based on fitting complex models to data.

Keep Reading ↓ Show less