How I Learned to Live Google-free

A quest to quit the most pervasive company on the Web

13 min read
How I Learned to Live Google-free

This is part of IEEE Spectrum's special report on the battle for the future of the social Web.

If you’re reading this article right now, the chances are good that you’ve recently done business with Google. Maybe you got here via Google Search. Maybe you’re currently signed in to Gmail. Even if you don’t have a Google account, Google Analytics is likely tracking your movements on this site right now.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Diamond "Blanket" Can Cool the Transistors Needed for 6G

Gallium nitride transistors have struggled to handle the thermal load of high-frequency electronics

4 min read
blue mountain of crystals with an inset of molecules on a pink background
Srabanti Chowdhury/Stanford

High-power radio-frequency electronics are a hot commodity, both figuratively and literally. The transistors needed to amplify 5G and future 6G signals are struggling to handle the thermal load, causing a bottleneck in development. Engineers in the United States and England have teamed up to demonstrate a promising solution—swaddling individual transistors in a blanket of thermally conductive diamond to keep them cool.

“Thermal issues are currently one of the biggest bottlenecks that are plaguing any kind of microelectronics,” says team lead Srabanti Chowdhury, professor of electrical engineering at Stanford University. “We asked ourselves ‘can we perform device cooling at the very material level without paying a penalty in electrical performance?’”

Keep Reading ↓Show less

New Contactless ECG Continuously Monitors the Heart

Millimeter-wave radar device make electrode-less cardiovascular health tech possible

3 min read
Video still of a man lying down. A box shaped device on a pole sits above his body. To the left, a monitor displays ECG readings.

The researchers demonstrated an experimental setup for contactless ECG monitoring using millimeter-wave radar.

University of Science and Technology Of China/IEEE

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

More than 100 years after the technology was first developed, the electrocardiogram (ECG) remains the gold standard for measuring the electrical activity of the heart. However, an ECG currently requires electrodes to be attached on a person’s skin. Even the latest consumer technologies like the Apple Watch require a user seeking an ECG to touch a finger to the device’s protruding “digital crown,” forming a circuit across the user’s body, thereby enabling electrical signals across the heart to be measured.

However, researchers in China have reported the invention of a novel ECG technology that uses millimeter-wave radar and AI to infer an ECG signal, making the system completely contactless. Should the researchers’ initial promising results bear out, the millimeter-wave tech could inspire new applications based on a reliable and uninterrupted stream of heart health data.

Keep Reading ↓Show less

Accelerate the Future of Innovation

Download these free whitepapers to learn more about emerging technologies like 5G, 6G, and quantum computing

1 min read
Keysight
Keysight

Looking for help with technical challenges related to emerging technologies like 5G, 6G, and quantum computing?

Download these three whitepapers to help inspire and accelerate your future innovations:

Keep Reading ↓Show less