Another Robot to Enter Fukushima Reactor, and We Wish It Were Modular

A real-world use case where modular robots could be invaluable

2 min read
Another Robot to Enter Fukushima Reactor, and We Wish It Were Modular
Toshiba's robot, which will explore Fukushima's Unit 2 reactor next month, has a “scorpion” design, with a tail that moves up and down and carries a camera.
Image: Toshiba

The search is still on for the melted fuel that is, hopefully, sitting in a death puddle somewhere at the bottom of Fukushima’s damaged nuclear reactors. After two snake robots, designed by Hitachi, explored the Unit 1 reactor back in April (with one of the robots getting stuck), the next expedition goes to Toshiba, with a “scorpion” design that will enter Unit 2 at the end of August. Hopefully it’ll work, but what this situation really needs is a modular, reconfigurable robot. Here’s why.

In order to get down into the shattered interior of the Unit 2 reactor, where an interior detonation is thought to have caused severe damage, robots must be fed through a narrow duct and even go over a gap between two platforms. To do that, a robot by necessity must be long and skinny, hence Hitachi’s snake design. Toshiba’s robot, designed in collaboration with Japan’s International Research Institute for Nuclear Decommissioning (IRID), is trying something slightly different, with a liftable tail that it can bring up and around over its body:

The robot is 54 centimeters long, and is radiation hardened to be able to operate inside the reactor for at least 10 hours.

Now, there’s nothing wrong with this design, but it seems clear that its adaptability is severely limited, because of the constraints imposed by the entry point. Those tracks, for example, don’t look like they’d be very good at dealing with much in the way of debris, but there’s simply not enough room to make them significantly bigger or more robust. And although the robot has been radiation hardened, when an important component gets fried (and an important component will, eventually, get fried), it’s done.

Thirteen years ago, Mark Yim, Ying Zhang, and David Duff wrote an article for us about the advantages of modular, reconfigurable, adaptable robots. Modular robotics has been hypothetically useful for decaudes, but this, right here, is a real-world use case where modular robots could be invaluable. This is the moment where all those “this robot could potentially be used in disaster areas” rationalizations that you find in grant proposals or at the ends of papers might actually pay off: a situation in which a robot that can disassemble into pieces, or adaptively reconfigure itself on the fly, could be better and faster than any traditional design. Plus, you’ve got an extraordinarily harsh environment, where radiation will start causing your robot serious problems in a matter of hours, in which case having the ability to adapt—by changing shape or behavior to deal with a damaged components, for example—could significantly extend the useful life of your robot.

To be sure, there’s an enormous amount of work that would have to be done to transition modular or adaptive robots from research into real world applications. So at this point, it’s unrealistic to make any sort of demand on a technology that’s still under active development. But it would be great to have something to point to and say, “See? You know all that crazy robot research? This is why it’s important.”

[ Toshiba ] via [ AP ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less