Harnessing Cosmic Rays to Peer Into Fukushima’s Deadly Reactors

Physicists use particles called muons to map the melted nuclear cores

10 min read
Harnessing Cosmic Rays to Peer Into Fukushima’s Deadly Reactors
Mapping the Meltdown: Five years after Japan’s nuclear disaster, the reactors’ meltdown zones are still far too dangerous for human workers. This image was produced in the first attempt to look inside a reactor using subatomic particles called muons.
Photo: IRID/TEPCO

They come from outer space. Some are born within the cozy confines of our solar system, surging forth when our sun flares up, as it routinely does, with geysers of plasma. Others have traveled from unfathomably distant reaches beyond our Milky Way galaxy, where stars at the end of their lives went supernova with mighty and sustained blasts.

They are cosmic rays: streams of electrically charged subatomic particles that perpetually bombard Earth. When they hit the thick blanket of gas that surrounds and protects our planet, they collide with atoms and split into even tinier fragments that rain down to the ground. Physicists call these assortments of particles “air showers.”

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The EV Transition Explained: Can the Grid Cope?

Palo Alto offers a glimpse at the challenges municipalities and utilities face

8 min read
A man plugging a charger into an outlet

Enel's Juicebox 240-volt Level 2 charger for electric vehicles.

Enel X Way USA

There have been vigorous debates pro and con in the US and elsewhere over whether the electric grids can support EVs at scale. The answer is a nuanced “perhaps.” It depends on several factors, including the speed of grid component modernization, the volume of EV sales, where they occur and when, what kinds of EV charging are being done and when, regulator and political decisions, and critically, economics.

The city of Palo Alto, California is a microcosm of many of the issues involved. Palo Alto boasts the highest adoption rate of EVs in the US: In 2020, one in six of the town’s 25,000 households owned an EV. Of the 52,000 registered vehicles in the city, 4,500 are EVs, and on workdays, commuters drive another 3,000 to 5,000 EVs enter the city. Residents can access about 1000 charging ports spread among over 277 public charging stations, with another 3,500 or so charging ports located at residences.

Keep Reading ↓Show less

The James Webb Space Telescope was a Career-Defining Project for Janet Barth

NASA’s first female engineering chief was there from conception to first light

5 min read
portrait of older woman in light blue jacket against dark gray background Info for editor if needed:
Sue Brown

Janet Barth spent most of her career at the Goddard Space Flight Center, in Greenbelt, Md.—which put her in the middle of some of NASA’s most exciting projects of the past 40 years.

She joined the center as a co-op student and retired in 2014 as chief of its electrical engineering division. She had a hand in Hubble Space Telescope servicing missions, launching the Lunar Reconnaissance Orbiter and the Magnetospheric Multiscale mission, and developing the James Webb Space Telescope.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.