The December 2022 issue of IEEE Spectrum is here!

Close bar

Hacker High School

Can schools teach computer security without turning kids into cybercriminals?

5 min read

Teens often explore the world by tinkering with it. How can you channel that impulse and turn it into real engineering? Send them to Hacker High School.

It’s not a real school, of course. The Institute for Security and Open Methodologies (ISECOM), a nonprofit technology research organization based in New York City and Barcelona, uses the allure of hacking to teach kids computer security through an open-source curriculum. "I’m trying to make students resourceful," says Institute managing director Peter Herzog. "We don’t spoon-feed them."

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Liquid Metal Stretchy Circuits, Built With Sound

Encase metallic droplets in plastic for elastic electronics

2 min read
Dark photograph of gloved hands holding an item that has the letters DMDL, with glowing yellow rectangles in an assortment of spots on the letters.

Liquid metal particles sheathed in polymers connect microLEDs to make an ultra-stretchable display.

Korea Advanced Institute of Science and Technology

A team in Korea has used sound waves to connect tiny droplets of liquid metals inside a polymer casing. The novel technique is a way to make tough, highly conductive circuits that can be flexed and stretched to five times their original size.

Making stretchable electronics for skin-based sensors and implantable medical devices requires materials that can conduct electricity like metals but deform like rubber. Conventional metals don’t cut it for this use. To make elastic conductors, researchers have looked at conductive polymers and composites of metals and polymers. But these materials lose their conductivity after being stretched and released a few times.

Keep Reading ↓Show less

"SuperGPS" Accurate to 10 Centimeters or Better

New optical-wireless hybrid makes use of existing telecommunications infrastructure

3 min read
illustration of man looking at giant smart phone with map and red "you are here" symbol
iStock

Modern life now often depends on GPS(short for Global Positioning System), but it can err on the order of meters in cities. Now a new study from a team of Dutch researchers reveals a terrestrial positioning system based on existing telecommunications networks can deliver geolocation info accurate to within 10 centimeters in metropolitan areas.

The scientists detailed their findings 16 November in the journal Nature.

Keep Reading ↓Show less

Get the Coursera Campus Skills Report 2022

Download the report to learn which job skills students need to build high-growth careers

1 min read

Get comprehensive insights into higher education skill trends based on data from 3.8M registered learners on Coursera, and learn clear steps you can take to ensure your institution's engineering curriculum is aligned with the needs of the current and future job market. Download the report now!