Graphene-based Nanoantennas Could Speed Up Wireless Networks

Far-off applications for nanomachines have been proposed, but initial uses seem the most attractive

2 min read
Graphene-based Nanoantennas Could Speed Up Wireless Networks
Illustration: Ian Akyildiz and Josep Jornet/Georgia Institute of Technology

Researchers at the Georgia Institute of Technology say they've demonstrated via computer modeling that nano-antennas made from graphene could enable networks of nanomachines

It’s not clear exactly what kind of nanomachines the researchers are referring to, but a guess is that they are something along the lines of Eric Drexler’s proposal nearly thirty years ago of universal assemblers. I suppose another computer simulation of how nanomachines could be developed is welcome, but it sure would be good to see more physical experiments in developing the little rascals. In any case, I am not sure that making antennas for them has been the main stumbling block preventing them from being built over the last three decades.

Aside from enabling communication between nanomachines, the graphene antennas could be used in mobile phones and Internet-connected laptops to help them communicate faster.

The trick to the new antennas is the graphene. Unlike copper and other materials graphene could operate with very little energy. Because of graphene’s honeycomb structure its surface generates an electronic surface wave.

“We are exploiting the peculiar propagation of electrons in graphene to make a very small antenna that can radiate at much lower frequencies than classical metallic antennas of the same size,” said Ian Akyildiz, a professor at the Georgia Institute of Technology, in a press release. “We believe that this is just the beginning of a new networking and communications paradigm based on the use of graphene.”

The "peculiar propagation" to which Akyildiz refers occurs when the electrons in graphene are excited by an incoming electromagnetic wave. The electrons in this case start moving back and forth, creating an oscillation of charge, which in turn produces a confined electromagnetic wave on the surface of the graphene.

This phenomenon is known as a surface plasmon polariton (SPP) wave and would make it possible for the graphene-based nanoantennas to operate at the low end of the terahertz frequency range, between 0.1 and 10 terahertz. While metals, such as gold, are capable of generating an SPP, they do so only at a much higher frequency.

No Georgia Tech nanotech-related story would be complete without a reference to Professor Zhong Lin Wang’s work in exploiting the piezoelectric qualities of zinc oxide nanowires to create “nanogenerators”. And the graphene nanoantenna is no exception.

In this case, the idea is that the nanogenerators in combination with the nanoantennas would make possible networked nanomachines that require very little energy and get the energy they need from movement to the piezoelectric nanowires.

“With this antenna, we can cut the frequency by two orders of magnitude and cut the power needs by four orders of magnitude,” said Josep Jornet, a graduate student at the time of the research and now an assistant professor at the State University of New York at Buffalo, in the press release. “Using this antenna, we believe the energy-harvesting techniques developed by Dr. Wang would give us enough power to create a communications link between nanomachines.”

While the researchers sound quite enthused about enabling nanomachines, they might find that initial applications in macroscale wireless networks far more rewarding. This is especially true considering that the simulations indicate that the terahertz band the graphene antennas enable can boost data rates in wireless networks by more than two orders of magnitude. Enabling communications between devices that don't exist doesn't sound quite as impressive.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.


If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less