Graphene Nanosensor Tattooed to Teeth Detects Bacteria

Nanosensor expected to be first-generation platform for on-body health monitoring

2 min read
Graphene Nanosensor Tattooed to Teeth Detects Bacteria

A couple of years ago I covered research into developing a nanomaterial that could end the need for root canals. I took some criticism at the time for suggesting in that blog that root canals were unpleasant. So, despite some reluctance on my part to cover dental-related nanotechnologies, let's look once again at the latest nanotechnology being used with teeth.

The technology involves a nanosensor made out of graphene that can detect bacteria in our mouths when the sensor is in a sense tattooed to our teeth. Oddly, it seems that the bacteria that the nanosensor detects is not the Streptococcus mutans bacteria that is the principal cause of tooth decay.

While the research, which was initially published in the journal Nature Communications, may not combat tooth decay, it holds some promise as method for on-body health monitoring. The researchers from Tufts University and Princeton University have developed a method for placing wireless graphene nanosensors onto biomaterials via silk absorption.

“In our paper, we demonstrate that graphene can be printed onto water-soluble silk, says Manu S Mannoor, a graduate student at Princeton University and the paper’s first author. “This in turn permits intimate biotransfer and direct interfacing of graphene nanosensors with a variety of substrates including biological tissues and hospital IV bags to provide in situ monitoring and detection of bacterial contamination and infection."

The key to the technology seems to be the use of silk thin films. "First, we printed graphene nanosensors onto water-soluble silk thin-film substrates,” explains Mannoor in the Nanowerk piece. “The graphene is then contacted by interdigitated electrodes, which are simultaneously patterned with an inductive coil antenna. Finally, the graphene/electrode/silk hybrid structure is transferred to biomaterials such as tooth enamel or tissue, followed by functionalization with bifunctional graphene–AMP biorecognition moeities."

The researchers expect that this technology could serve as a first-generation platform of in situ monitoring for bacterial contamination in environments ranging from hospital sanitation to food safety analysis.

This new nanosensor may not alert you to the buildup of bacteria that would cause tooth decay, but it might be of interest those who like to decorate their teeth and be alerted to other types of bacteria.

Image: McAlpine Group, Princeton University

The Conversation (0)

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less