Graphene Electronics, Unzipped

By unrolling tiny carbon tubes, you can produce superthin sheets with truly extraordinary electronic properties

10 min read
Graphene Electronics, Unzipped
Illustration: Bryan Christie Design
Animation: Bryan Christie Design
TO UNZIP A NANOTUBE, chemists apply a mixture of sulfuric acid and potassium permanganate. This reagent pries open some of the carbon-carbon bonds, opening a breach in the hexagonal cells. Continued chemical reactions proceed down the tube, opening a pathway along the chicken-wire structure, causing it to unfurl all the way down its length, producing a conductive ribbon that is extraordinarily long and thin.


Can any electronics material rival silicon—tunable, current-carrying, self-insulating, easy to fabricate, as common as sand on the beach? Even if another rival came forward, could it ever overcome silicon’s 50-year, trillion-dollar head start in development?

Yet we do need an adjunct to silicon, because so much of the potential market for electronics has yet to be opened. Electronics in paper, on walls, and in clothing are today mere novelties, simply because silicon can’t easily be painted on a surface, draped on a flexible platform, or used to cover large areas. What’s needed is something that can do all that and still be churned out cheaply and in bulk, processed easily, and slipped deftly into the guts of the next generations of electronics.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Women Behind ENIAC

A new book tells the story of how they broke a computer-science glass ceiling

6 min read
Two women programmers preparing a computer to be demonstrated.

Jean Jennings (left) and Frances Bilas, two of the ENIAC programmers, are preparing the computer for Demonstration Day in February 1946.

University Archives and Records Center/University of Pennsylvania

If you looked at the pictures of those working on the first programmable, general-purpose all-electronic computer, you would assume that J. Presper Eckert and John W. Mauchly were the only ones who had a hand in its development. Invented in 1945, the Electronic Numerical Integrator and Computer (ENIAC) was built to improve the accuracy of U.S. artillery during World War II. The two men and their team built the hardware. But hidden behind the scenes were six women—Jean Bartik, Kathleen Antonelli, Marlyn Meltzer, Betty Holberton, Frances Spence, and Ruth Teitelbaum—who programmed the computer to calculate artillery trajectories in seconds.

The U.S. Army recruited the women in 1942 to work as so-called human computersmathematicians who did calculations using a mechanical desktop calculator.

Keep Reading ↓Show less

The U.S.-China Chip Ban, Explained

The ban spotlights semiconductors for supercomputers; China hasn’t yet responded to restrictions

4 min read
computer chip with chinese flag
iStock

It has now been over a month since the U.S. Commerce Department issued new rules that clamped down on the export of certain advanced chips—which have military or AI applications—to Chinese customers.

China has yet to respond—but Beijing has multiple options in its arsenal. It’s unlikely, experts say, that the U.S. actions will be the last fighting word in an industry that is becoming more geopolitically sensitive by the day.

This is not the first time that the U.S. government has constrained the flow of chips to its perceived adversaries. Previously, the United States hasblocked chip sales to individual Chinese customers. In response to the Russian invasion of Ukraine earlier this year, the United States (along with several other countries, including South Korea and Taiwan) placed Russia under a chip embargo.

Keep Reading ↓Show less

Fourth Generation Digitizers With Easy-to-Use API

Learn about the latest generation high-performance data acquisition boards from Teledyne

1 min read

In this webinar, we explain the design principles and operation of our fourth-generation digitizers with a focus on the application programming interface (API).

Register now for this free webinar!

Keep Reading ↓Show less