Graphene and Perovskite Lead to Inexpensive and Highly Efficient Solar Cells

New blend of materials promises highly scalable production of highy efficient solar cells

2 min read
Graphene and Perovskite Lead to Inexpensive and Highly Efficient Solar Cells
Photo: The Hong Kong Polytechnic University

Perovskite is the new buzzword in photovoltaics. And graphene is the buzzword for just about every other high-tech application, including photovoltaics.

Now researchers at Hong Kong Polytechnic University have combined these two materials to make a semi-transparent solar cell capable of power conversion efficiencies around 12 percent, a significant improvement over the roughly 7-percent efficiency of traditional semi-transparent solar cells.

The semi-transparent design of these solar cells means that they can absorb light from both sides and could allow them to be used as windows that serve the dual function of letting light into a building and generating electricity.

In the design of the Hong Kong researchers’ solar cell, the perovskite serves as active layer for harvesting the light, and the graphene acts as the transparent electrode material. Graphene has long been pursued as a potential replacement for indium tin oxide (ITO) as a transparent electrode material for displays.

Here again, graphene’s transparency, high conductivity, and potentially low cost seemed attractive to the researchers. The researchers improved on the conductivity of the graphene by coating it with a thin layer of a polymer that also served as an adhesion layer to the perovskite active layer during the lamination process.

The researchers were able to improve the energy conversion capability of the solar cells by employing a multi-layer chemical vapor deposition process in which the graphene formed the top transparent electrodes. This approach maintained the transparency of the electrodes while increasing their sheet resistance.

A big concern for the researchers was lowering costs. They claim that their solar cells cost less than US$.06/watt, which they reckon is more than a 50 percent reduction in the costs of silicon solar cells. They believe that the whole process is ripe for scaling up because the mechanical flexibility of the graphene enables the possibility of roll-to-roll processing.

The Conversation (0)

How to Prevent Blackouts by Packetizing the Power Grid

The rules of the Internet can also balance electricity supply and demand

13 min read
How to Prevent Blackouts by Packetizing the Power Grid
Dan Page

Bad things happen when demand outstrips supply. We learned that lesson too well at the start of the pandemic, when demand for toilet paper, disinfecting wipes, masks, and ventilators outstripped the available supply. Today, chip shortages continue to disrupt the consumer electronics, automobile, and other sectors. Clearly, balancing the supply and demand of goods is critical for a stable, normal, functional society.

That need for balance is true of electric power grids, too. We got a heartrending reminder of this fact in February 2021, when Texas experienced an unprecedented and deadly winter freeze. Spiking demand for electric heat collided with supply problems created by frozen natural-gas equipment and below-average wind-power production. The resulting imbalance left more than 2 million households without power for days, caused at least 210 deaths, and led to economic losses of up to US $130 billion.

Keep Reading ↓ Show less