The December 2022 issue of IEEE Spectrum is here!

Close bar

Goose Bump Detector Senses Your Skin Crawling

A skin sensor capable of monitoring goose bumps could lead to future devices for monitoring the wearer's emotional state

2 min read
Goose Bump Detector Senses Your Skin Crawling
Image: Young-Ho Cho/KAIST

A swell of music that evokes a long-forgotten memory, the rising tension of a horror film, or a sudden drop in temperature can all lead to tiny goose bumps on human skin—a physical response sometimes related to emotional states. New skin sensors capable of tracking such hair-raising moments in life could someday help detect a person's reaction to a new movie or online advertisement.

The flexible polymer sensor, about the size of a postage stamp, was developed by researchers at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea. Such technology can detect goose bumps (or piloerection, as researchers call them) based on the changes in the flat shape of the electronic sensor and the related decrease in capacitance.

"We found that the height of the goose bump and the piloerection duration can be deduced by analyzing obtained capacitance change trace," said Young-Ho Cho, a professor of bioengineering and mechanical engineering at KAIST, in a press release.

Cho and his colleagues built their sensor using a conductive polymer called PEDOT:PSS, a flexible material compared to more brittle, metallic materials. They combined the polymer with a type of flexible silicon that is also biocompatible to create a sensor just 1.2 micrometers thick and 20 millimeters on each side, as detailed in the researchers' paper in the journal Applied Physics Letter.

The triggering of goose bumps varies from person to person, of course. Any future goose bump sensing device would presumably be paired with other sensors capable of helping to narrow down the physical or emotional response that had triggered goose bumps in a person. (To test their sensor, the researchers didn't try to evoke some emotional goose bumps and relied instead on an eager test subject who grabbed ice cubes to give himself a cold shock.)

Still, the prototype sensor hints at future devices that could help monitor the physical and emotional states of consumers in real time. Cho suggested that human emotions could be tracked in the future as easily as body temperature or blood pressure. As a next step, the team aims to miniaturize the signal processing and capacitance measurement parts of the system to make the sensor even smaller and less obtrusive.

The Conversation (0)

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less