Goose Bump Detector Senses Your Skin Crawling

A skin sensor capable of monitoring goose bumps could lead to future devices for monitoring the wearer's emotional state

2 min read
Goose Bump Detector Senses Your Skin Crawling
Image: Young-Ho Cho/KAIST

A swell of music that evokes a long-forgotten memory, the rising tension of a horror film, or a sudden drop in temperature can all lead to tiny goose bumps on human skin—a physical response sometimes related to emotional states. New skin sensors capable of tracking such hair-raising moments in life could someday help detect a person's reaction to a new movie or online advertisement.

The flexible polymer sensor, about the size of a postage stamp, was developed by researchers at the Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea. Such technology can detect goose bumps (or piloerection, as researchers call them) based on the changes in the flat shape of the electronic sensor and the related decrease in capacitance.

"We found that the height of the goose bump and the piloerection duration can be deduced by analyzing obtained capacitance change trace," said Young-Ho Cho, a professor of bioengineering and mechanical engineering at KAIST, in a press release.

Cho and his colleagues built their sensor using a conductive polymer called PEDOT:PSS, a flexible material compared to more brittle, metallic materials. They combined the polymer with a type of flexible silicon that is also biocompatible to create a sensor just 1.2 micrometers thick and 20 millimeters on each side, as detailed in the researchers' paper in the journal Applied Physics Letter.

The triggering of goose bumps varies from person to person, of course. Any future goose bump sensing device would presumably be paired with other sensors capable of helping to narrow down the physical or emotional response that had triggered goose bumps in a person. (To test their sensor, the researchers didn't try to evoke some emotional goose bumps and relied instead on an eager test subject who grabbed ice cubes to give himself a cold shock.)

Still, the prototype sensor hints at future devices that could help monitor the physical and emotional states of consumers in real time. Cho suggested that human emotions could be tracked in the future as easily as body temperature or blood pressure. As a next step, the team aims to miniaturize the signal processing and capacitance measurement parts of the system to make the sensor even smaller and less obtrusive.

The Conversation (0)

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less