The July 2022 issue of IEEE Spectrum is here!

Close bar

Google Plans to Demonstrate the Supremacy of Quantum Computing

By the end of 2017, Google hopes to make a 49-qubit chip that will prove quantum computers can beat classical machines

4 min read
Photo: Erik Lucero
Put Chip Here: Google will put its superconducting quantum computer chip in this 10-millikelvin dilution refrigerator.
Photo: Erik Lucero

Quantum computers have long held the promise of performing certain calculations that are impossible—or at least, entirely impractical—for even the most powerful conventional computers to perform. Now, researchers at a Google laboratory in Goleta, Calif., may finally be on the cusp of proving it, using the same kinds of quantum bits, or qubits, that one day could make up large-scale quantum machines.

By the end of this year, the team aims to increase the number of superconducting qubits it builds on integrated circuits to create a 7-by-7 array. With this quantum IC, the Google researchers aim to perform operations at the edge of what’s possible with even the best supercomputers, and so demonstrate “quantum supremacy.”

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Future of Deep Learning Is Photonic

Computing with light could slash the energy needs of neural networks

10 min read
Image of a computer rendering.

This computer rendering depicts the pattern on a photonic chip that the author and his colleagues have devised for performing neural-network calculations using light.

Alexander Sludds
DarkBlue1

Think of the many tasks to which computers are being applied that in the not-so-distant past required human intuition. Computers routinely identify objects in images, transcribe speech, translate between languages, diagnose medical conditions, play complex games, and drive cars.

The technique that has empowered these stunning developments is called deep learning, a term that refers to mathematical models known as artificial neural networks. Deep learning is a subfield of machine learning, a branch of computer science based on fitting complex models to data.

Keep Reading ↓Show less