The December 2022 issue of IEEE Spectrum is here!

Close bar

Yeah, so this right here is a giant robotic spider. By "giant" I mean that those legs are 20 centimeters long each, and if the body adds another 20 centimeters, we're looking at a robot arachnid that's a terrifying two feet across (0.6 meters). For what it's worth, this is approximately twice the size of the largest real spider, the Goliath bird-eater, and the Goliath bird-eater doesn't even jump.

Oh yes, this robot jumps.

The neat thing about spiders (if you're into spiders, anyway), is that they're hydraulically operated. Instead of moving their limbs with muscles, they do it by increasing the blood pressure in whatever limb they want to extend. Hydraulically operated robots work the same way, except they have a hydraulic pump instead of a heart and hydraulic fluid instead of blood. This can be a very effective way of providing power to limbs, which is why Boston Dynamics uses a hydraulic system in AlphaDog and PETMAN.

Anyway, back to this freaky thing. Designed by a team at the Fraunhofer Institute for Manufacturing Engineering and Automation in Germany, this prototype robospider was 3D printed, meaning that more of them than I would personally be comfortable with can be manufactured quickly and cheaply. A hydraulic pump in the body provides fluid pressure to the limbs allowing the robot to crawl forwards and backwards, and some versions are apparently powerful enough to leap off the ground, grab you by the throat, and rip your head off. Or maybe not that last bit. Maybe.

In any case, having eight legs makes the robot exceptionally nimble, which is the whole reason for utilizing this design. The body of the spiderbot also contains the control system and a variety of sensors to enable it to perform its primary mission, which is as "an exploratory tool in environments that are too hazardous for humans." Like, I dunno, environments that are full of giant spiders?

[ Fraunhofer ] via [ Eureka

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less