Germany's Energiewende, 20 Years Later

Germany's far-reaching program to reduce the share of fossil fuels in energy has achieved almost exactly what the United States achieved, but at greater expense

3 min read
Photo of a village with windmills in the background.
Reap the Wind: Turbines of the Jacobsdorf wind farm tower over homes in Brandenburg, in northeastern Germany
Photo: Patrick Pleul/Picture Alliance/Getty Images

In 2000, Germany launched a deliberately targeted program to decarbonize its primary energy supply, a plan more ambitious than anything seen anywhere else. The policy, called the Energiewende, is rooted in Germany’s naturalistic and romantic tradition, reflected in the rise of the Green Party and, more recently, in public opposition to nuclear electricity generation. These attitudes are not shared by the country’s two large neighbors: France built the world’s leading nuclear industrial complex with hardly any opposition, and Poland is content burning its coal.

The policy worked through the government subsidization of renewable electricity generated with photovoltaic cells and wind turbines and by burning fuels produced by the fermentation of crops and agricultural waste. It was accelerated in 2011 when Japan’s nuclear disaster in Fukushima led the German government to order that all its nuclear power plants be shut down by 2022.

During the past two decades, the Energiewende has been praised as an innovative miracle that will inexorably lead to a completely green Germany and criticized as an expensive, poorly coordinated overreach. I will merely present the facts.

Cutting Carbon the Easy Way

Without an expensive, target-mandated Energiewende, the United States has decarbonized at least as fast as Germany

The initiative has been expensive, and it has made a major difference. In 2000, 6.6 percent of Germany’s electricity came from renewable sources; in 2019, the share reached 41.1 percent. In 2000, Germany had an installed capacity of 121 gigawatts and it generated 577 terawatt-hours, which is 54 percent as much as it theoretically could have done (that is, 54 percent was its capacity factor). In 2019, the country produced just 5 percent more (607 TWh), but its installed capacity was 80 percent higher (218.1 GW) because it now had two generating systems.

The new system, using intermittent power from wind and solar, accounted for 110 GW, nearly 50 percent of all installed capacity in 2019, but operated with a capacity factor of just 20 percent. (That included a mere 10 percent for solar, which is hardly surprising, given that large parts of the country are as cloudy as Seattle.) The old system stood alongside it, almost intact, retaining nearly 85 percent of net generating capacity in 2019. Germany needs to keep the old system in order to meet demand on cloudy and calm days and to produce nearly half of total demand. In consequence, the capacity factor of this sector is also low.

It costs Germany a great deal to maintain such an excess of installed power. The average cost of electricity for German households has doubled since 2000. By 2019, households had to pay 34 U.S. cents per kilowatt-hour, compared to 22 cents per kilowatt-hour in France and 13 cents in the United States.

We can measure just how far the Energiewende has pushed Germany toward the ultimate goal of decarbonization. In 2000, the country derived nearly 84 percent of its total primary energy from fossil fuels; this share fell to about 78 percent in 2019. If continued, this rate of decline would leave fossil fuels still providing nearly 70 percent of the country’s primary energy supply in 2050.

Meanwhile, during the same 20-year period, the United States reduced the share of fossil fuels in its primary energy consumption from 85.7 percent to 80 percent, cutting almost exactly as much as Germany did. The conclusion is as surprising as it is indisputable. Without anything like the expensive, target-mandated Energiewende, the United States has decarbonized at least as fast as Germany, the supposed poster child of emerging greenness.

This article appears in the December 2020 print issue as “Energiewende, 20 Years Later.”

The Conversation (0)

Practical Power Beaming Gets Real

A century later, Nikola Tesla’s dream comes true

8 min read
This nighttime outdoor image, with city lights in the background, shows a narrow beam of light shining on a circular receiver that is positioned on the top of a pole.

A power-beaming system developed by PowerLight Technologies conveyed hundreds of watts of power during a 2019 demonstration at the Port of Seattle.

PowerLight Technologies
Yellow

Wires have a lot going for them when it comes to moving electric power around, but they have their drawbacks too. Who, after all, hasn’t tired of having to plug in and unplug their phone and other rechargeable gizmos? It’s a nuisance.

Wires also challenge electric utilities: These companies must take pains to boost the voltage they apply to their transmission cables to very high values to avoid dissipating most of the power along the way. And when it comes to powering public transportation, including electric trains and trams, wires need to be used in tandem with rolling or sliding contacts, which are troublesome to maintain, can spark, and in some settings will generate problematic contaminants.

Keep Reading ↓ Show less