Geminoid Robots and Human Originals Get Together

The Geminoid family of ultrarealistic androids, each a copy of a real person, has gathered together for the first time

2 min read
Geminoid Robots and Human Originals Get Together

geminoid android humanlike robot

The Geminoid family has gathered together for the first time.

The ultrarealistic androids, each a copy of a real person, met on March 30 at Japan's ATR laboratory, near Kyoto.

Attending were Geminoid F, Geminoid HI-1, and Geminoid DK, as well as their respective originals: a twentysomething woman (whose identity remains a secret), Prof. Hiroshi Ishiguro of Osaka University, and Prof. Henrik Scharfe of Aalborg University, in Denmark [photo above].

The Geminoid robots, conceived by Prof. Ishiguro and a team at ATR, are manufactured by Japanese firm Kokoro. The robots work as a person's telepresence avatar: A computer captures the person's voice, facial expressions, and upper-body movements and transmits this data to the android.

Anyone can teleoperate the androids, but the experience is certainly unique for those individuals who served as templates.

"We wanted to get together and share our experience of having robot copies," Scharfe told me. "The three of us has a lot of fun doing this."

Watch what happened:

But the meeting was also an opportunity to conduct experiments. With the three robots sitting around a table, the human originals teleoperated their own copies and tried to have a conversation. Then they took turns operating each other's Geminoids.

"Returning to your own Geminoid felt like coming home," Scharfe said.

The researchers also tried other configurations, for example by having the human originals sitting with their androids on the table while other people teleoperated the robots.

According to Prof. Scharfe, whose Geminoid cost some US $200,000 and will be shipped to Denmark soon, some situations felt more natural than others, but generally he could accept the different conditions as "real conversations."

He will now take time to interpret the material from these experiments and hopes to publish his findings at some point.

As for the next Geminoid reunion -- have the researchers schedule it yet?

"It's very costly to ship [the androids] around," Scharfe says. "So it might not happen again!"

More photos:

geminoid android humanlike robots

geminoid android humanlike robot

geminoid android humanlike robot

Images and video: Geminoid DK

[ Geminoid DK ] via [ CNET ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less