The July 2022 issue of IEEE Spectrum is here!

Close bar

Gallium Oxide: Power Electronics’ Cool New Flavor

With improved heat conductivity, this semiconductor could leapfrog other challengers to silicon

3 min read
Gallium Oxide: Power Electronics’ Cool New Flavor
Source: Yole Développement, Lyon, France
Source: Yole Développement, Lyon, France
Semiconductors in Comparison: Flosfia’s gallium oxide devices exploit the material’s big bandgap and breakdown field while making up for its poor thermal conductivity. (Values are normalized to silicon’s [blue].)

Ideally, the electronic components that route electricitythroughpower supplies, inverters, and electric motors are cheap, efficient, and capable of handling high voltages. Judged in these terms, gallium oxide could be the best material yet, according to recent work by ­Flosfia, a startup in Kyoto.

That’s because silicon—the incumbent material for making diodes and transistors for the power electronics market—is cheap but not very efficient. And although this weakness is addressed by devices made from silicon carbide and gallium nitride, both have had limited commercial success due to high prices. Flosfia’s diodes are already performing more efficiently than those made from SiC and GaN.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less