The October 2022 issue of IEEE Spectrum is here!

Close bar

From Macro to Micro: A Visual Guide to the Brain

Here’s how the brain’s 86 billion neurons do their work

2 min read
Illustration: James Provost
Illustration: James Provost

Guide to the Brain

In the human brain, higher-level information processing occurs in the neocortex, neural tissue that forms the outer layer of the cerebral cortex. In its intricate folds, brain cells work together to interpret sensory information and to form thoughts and plans. The neocortex is divided into regions that take the lead on different types of processing. However, much of today’s neuroscience research focuses on mapping the connectome: the neural connections between regions.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

What Robotics Experts Think of Tesla’s Optimus Robot

Roboticists from industry and academia share their perspectives on Tesla’s new humanoid

11 min read
Tesla's Optimus robot waves at audience from the stage.

Tesla CEO Elon Musk unveiled the Optimus humanoid robot at AI Day on 30 September. In a brief demo, the robot walked, waved, and danced on stage. While robotics experts praised the Tesla team for putting the prototype together so quickly, most were unimpressed by its design.

Tesla

Last Friday, 30 September, Tesla introduced several prototypes of its new humanoid robot, Optimus. After a year of speculation based on little more than a person in a robot suit combined with some optimistic assertions made by Tesla CEO Elon Musk, many roboticists tuned in to the event livestream (or attended in person) to see what Tesla’s approach to humanoid robotics would turn out to be.

Reactions across the robotics community were diverse. Because robotics requires expertise in many different aspects of both software and hardware, getting a good sense of the present context of Tesla’s robot as well as its future potential means finding perspectives from a multitude of robotics experts, including people working in industry and academia and everywhere in between. And by scouring the Internet over the weekend, we found as many expert commenters as we could. Together, they offer the most detailed and nuanced understanding of Optimus we’re likely to get outside of Tesla itself.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

The World’s Largest Camera Is Nearly Complete

The future heart of the Vera C. Rubin Observatory will soon make its way to Chile

3 min read
A large black cylinder with a glass lens in front rests on a sturdy white structure in a bright room.

The LSST camera, eventually bound for the Vera C. Rubin Observatory in Chile, sits on its stand in a Bay Area clean room.

Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory

The world’s largest camera sits within a nondescript industrial building in the hills above San Francisco Bay.

If all goes well, this camera will one day fit into the heart of the future Vera C. Rubin Observatory in Chile. For the last seven years, engineers have been crafting the camera in a clean room at the SLAC National Accelerator Laboratory in Menlo Park, Calif. In May 2023, if all goes according to plan, the camera will finally fly to its destination, itself currently under construction in the desert highlands of northern Chile.

Building a camera as complex as this requires a good deal of patience, testing, and careful engineering. The road to that flight has been long, and there’s still some way to go before the end is in sight.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓Show less