Ford: Robotaxis in 2021, Self-Driving Cars for Consumer 2025

"No steering wheel, no brake pedal" for self-driving car, says CEO

1 min read
A self-driving Ford Fusion with lidar sensors on roof.
Photo: Ford

Mark Fields, the chief executive of Ford Motor Company, said his company would sell completely self-driving cars by about 2025, after first providing them via ride-hailing service, in 2021.

Such cars would have “no steering wheel, no brake pedal,” he said. “Essentially a driver is not going to be required.”

At first these robocars will cost more than conventional cars, he admitted, but the ride-hailing application will make up for that by saving the salary of a professional driver. Later, the rising scale of production will lower the sticker price enough to justify offering the robocars for sale. Ford can make money either way.

“Now vehicle miles traveled are just as important as the number of vehicles sold,” Fields said.

As robocars proliferate and cities impose congestion fees and other measures to limit traffic, total car sales may well drop. “But you can also argue that autonomous vehicles will be running continuously and will rack up more miles—and that that will mean more replacement.”

Ford has begun framing itself as a mobility company rather than a mere car company, and it has emphasized the point recently by announcing ventures to provide cities with electric-bicycle services and shuttle services. Asked about recent drops in the company’s share prices—a sign that investors aren’t happy with a program that can only bear fruit a decade hence—Fields said his company wasn’t managed for the short run alone. 

He quoted Wayne Gretzky, the famed Canadian hockey player: “You’ve got to skate to where the puck is going to go.”

This post was corrected on 12 September to get a sports fact right.

The Conversation (0)

Self-Driving Cars Work Better With Smart Roads

Intelligent infrastructure makes autonomous driving safer and less expensive

9 min read
A photograph shows a single car headed toward the viewer on the rightmost lane of a three-lane road that is bounded by grassy parkways, one side of which is planted with trees. In the foreground a black vertical pole is topped by a crossbeam bearing various instruments. 

This test unit, in a suburb of Shanghai, detects and tracks traffic merging from a side road onto a major road, using a camera, a lidar, a radar, a communication unit, and a computer.

Shaoshan Liu

Enormous efforts have been made in the past two decades to create a car that can use sensors and artificial intelligence to model its environment and plot a safe driving path. Yet even today the technology works well only in areas like campuses, which have limited roads to map and minimal traffic to master. It still can’t manage busy, unfamiliar, or unpredictable roads. For now, at least, there is only so much sensory power and intelligence that can go into a car.

To solve this problem, we must turn it around: We must put more of the smarts into the infrastructure—we must make the road smart.

Keep Reading ↓Show less