For Parkinson's Patients, Hearing Voices Could Be a Good Thing

Purdue researchers have developed an in-ear device that uses recorded chatter to improve the speech of Parkinson's patients

3 min read

Speech pathologists have been trying to get their patients with Parkinson’s disease to raise their voices for years. Although the condition is primarily characterized by tremors and difficulty in walking, most patients also suffer from speech problems, particularly slurring and what’s known in the field as weak voice. Now, Jessica Huber, an associate professor in the speech, language, and hearing sciences department at Purdue University, in West Lafayette, Ind., has developed a wearable device specifically designed to get Parkinson’s patients to speak louder and clearer.

Speech pathologists usually work with Parkinson’s patients one-on-one, but the patients often regress when they leave the clinic. Huber wanted to get patients to talk louder in both clinical and natural settings. She knew that audiologists often used recorded party chatter to test patients’ abilities to raise their voices in response to noise, a reflex action known as the Lombard effect. Huber reasoned that if she could integrate the party chatter recording into a portable and user-friendly package, she would be able to activate the Lombard reflex in her Parkinson’s patients anytime, anywhere.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).

NIST

Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓ Show less