The December 2022 issue of IEEE Spectrum is here!

Close bar

Flywheels Get Their Spin Back With Beacon Power's Rebound

Grid stabilization energizes flywheel pioneer Beacon Power and a host of new competitors

3 min read
Flywheels Get Their Spin Back With Beacon Power's Rebound
Whirling Wattage: Beacon Power built a 20-megawatt plant in Hazle, Pa. It started regulating grid frequency in July 2014.
Photo: Beacon Power

Flywheel-based energy storagegot a black eye with the 2011 bankruptcy filing of Beacon Power Corp., a leading energy storage company, based in Massachusetts, whose technology upgrades pushed flywheels to grid-scale applications. But that blemish proved ephemeral. New investors pulled Beacon Power out of bankruptcy, and last July the firm started a second commercial facility, in Hazle, Pa., to provide power-grid-regulation services. Beacon is attacking new markets that would take the technology in a new direction, followed closely by new grid-scale flywheel competitors.

Recent entrants in the flywheel field include Boston’s Helix Power, cofounded by former Beacon Power chief technical officer Matt Lazarewicz, and Williams Advanced Engineering, based in Wantage, England, which is scaling up technology from the flywheel-based hybrid drivetrains it built for Formula One race cars.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less