How to Fly a Drone With Your Body

For real and simulated drones, piloting with torso movements outperforms a joystick every time—and it’s easier to learn

3 min read
A model demonstrates a body-machine interface for controlling a simulated drone.
Photo: Alain Herzog/École Polytechnique Fédérale de Lausanne

Using only the movements of one’s torso to pilot a drone is more intuitive—and more precise—than a joystick, according to new research from engineers at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

The technique, tested in virtual reality and with real drones, requires less mental focus from the pilot and frees up their head and limbs. So, for instance, a drone operator at a natural disaster site or on a search and rescue mission could concentrate on looking around and analyzing visual information rather than controlling the flight path of the drone.

The team also found that torso control is easier to learn and more intuitive than a traditional joystick for most people.

“It’s not that a joystick does not work—pilots for drone racing do amazing things with their joysticks—but we’ve noticed that for some people, it can be difficult to learn and you have to be really focused while you’re doing it,” says study author Jenifer Miehlbradt, a graduate student at EPFL.

In a series of experiments described this week in the journal PNAS, a team led by Miehlbradt and EPFL neuroengineer Silvestro Micera set out to come up with an alternative, easier way to pilot a drone.

Infrared markers on a volunteer Photo: Alain Herzog/École Polytechnique Fédérale de Lausanne

First, they stuck over a dozen infrared markers all over the upper body of 17 volunteers and asked them to follow a virtual drone through a simulated landscape in virtual reality. “We asked them to follow the movements of the drone with their body in a way that felt natural to them,” says Miehlbradt.

One participant opted to fly the drone like Superman—with one arm extended above his head—and another chose to “swim” through the air, but everyone else used either their torso alone or their torso and arms to glide like a bird.

Next, in a first-person virtual reality simulation, 39 volunteers were asked to follow a path of clouds as closely as possible. Across the board, torso control was easier to learn and more precise than torso and arms or joystick control.

Plus, it actually feels like flying, says Miehlbradt.

Finally, it was time to try out the torso technique with real drones. Participants were allowed to train for nine minutes in virtual reality, then were given control of a quadcopter with FPV video feedback and allowed to freely fly for two minutes to get used to its dynamics.

“At first, it’s a bit scary,” says Miehlbradt. “It takes a minute to get used to this feeling of ‘I’m over there, with this object that is moving.’ It’s extremely immersive.”

In their final test, volunteers were asked to steer the drone through six gates arranged along a figure-eight trajectory. With the aforementioned minimal training, they did well, steering the quadcopter through the gates without collisions 88 percent of the time.

These initial experiments were done with reflective markers on the body and a motion-capture system involving cameras set up around the subject. While a tried-and-true method for motion analysis, such a system is too bulky and expensive for widespread, commercial use.

Now, a second team at EPFL has built the “FlyJacket”—a soft jacket with a motion-sensing device on the back, an arm-support system to prevent fatigue, and VR goggles for simulation. This portable system could eventually be applicable to consumer drones or other types of robots.

In the future, the team’s screening method could also be used to identify common, intuitive control patterns for robots of various shapes, says Miehlbradt. Maybe even a flying robot that can transform its shape in mid-air?

And, yes, we know you’re thinking it: This type of body control could—and very likely will—be applied to virtual reality and other types of gaming. During development, the team often set up demonstrations on campus to let people try out flying the drones. The response was unequivocal: “They love it,” says Miehlbradt with a laugh. “It’s something new. It really gives you a feeling of flying…I think it could become more popular than a joystick.”

The Conversation (0)

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less