Fly Like A Bird

Flapping wings could revolutionize aircraft design

10 min read
Fly Like A Bird
Illustration: John MacNeill

A silvery airplane appears on the horizon. At first glance, nothing seems out of the ordinary about the small dot moving across the sky. Only when it's directly overhead do you realize you've never seen a plane quite like this: just like a bird, it arcs its broad wings up and then pushes them down in one continuous, fluid motion. No turbines or propellers, no flaps or rudders interrupt the smooth surface of the plane's flattened body, and it emits barely a whisper as it sweeps past. Even as you struggle to take it all in, the plane furls both wings, plunges forward, and soars out of sight.

"The bird is a machine that operates according to mathematical law."
--Leonardo Da Vinci

This futuristic plane is so far just a concept in the minds of a small research team, of which I am a part. But if we have our way, a flapping-wing plane like this could become a reality within a decade or two. Over the past seven years, our group, scattered in five U.S. locations, has been investigating exactly what it would take to build such an aircraft. With funding from the NASA Institute for Advanced Concepts, in Atlanta, we've completed a feasibility study and worked out an initial design--and even some functional, if crude, proof-of-principle models.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Damaged Hearts Next in Line for Powerful mRNA Therapies

COVID-19 vaccine technology now points toward repairing ravages of heart attacks

3 min read
Light and dark pink sections of a microscopic view of heart tissue

Light micrograph of a section through the endocardium, the membrane that lines the heart (across top), following a heart attack. Necrotic (dead) muscle fibres (across bottom) have stained a deeper red, but their nuclei no longer stain.

CNRI/Science Source

The messenger RNA COVID-19 vaccines, including ones made by Moderna and Pfizer, notched some famous successes and pioneered the use of mRNA technology along the way. Now, scientists are applying testing similar technologies as treatments for a variety of conditions, including heart injury. New research presented in April at the Frontiers in CardioVascular Biomedicine 2022 conference shows that mRNA can help heart cells regenerate after being damaged from a heart attack—and has the potential to be an effective therapy. Other recent research treating cardiac injury using similar approaches has also shown promise. Should these treatments be effective in people, they would be among the first to heal damage after a heart attack, which current treatments for heart attack don't really do.

“A real solution is not provided to the patient,” said Dr. Maria Clara Labonia, a medical doctor and Ph.D student at the University of Utrecht in the Netherlands who is the lead author of the study. “So many aims are towards new therapeutic strategies.”

Keep Reading ↓ Show less

Video Friday: Drone in a Cage

Your weekly selection of awesome robot videos

3 min read
A drone inside of a protective geometric cage flies through a dark rain

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

ICRA 2022: 23 May–27 May 2022, PHILADELPHIA
IEEE ARSO 2022: 28 May–30 May 2022, LONG BEACH, CALIF.
RSS 2022: 21 June–1 July 2022, NEW YORK CITY
ERF 2022: 28 June–30 June 2022, ROTTERDAM, NETHERLANDS
RoboCup 2022: 11 July–17 July 2022, BANGKOK
IEEE CASE 2022: 20 August–24 August 2022, MEXICO CITY
CLAWAR 2022: 12 September–14 September 2022, AZORES, PORTUGAL

Enjoy today’s videos!

Keep Reading ↓ Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓ Show less