Flexible Inorganic LED Displays

Printed compound semiconductors could challenge OLEDs, say researchers

2 min read

21 August 2009—Organic light-emitting diodes, or OLEDs, are seen as the successor to liquid crystal technology for small, pixel-dense displays like the ones in laptops, smartphones, and digital cameras. Conventional inorganic LEDs, which are poised to put incandescent and fluorescent lightbulbs out to pasture, have never been in the race, because the processing techniques used to make them don’t allow scaling down to the resolution required for a pocket-size display.

But a group made up of researchers based in Illinois and Beijing reported yesterday in the online edition of Science that they have developed methods for creating, assembling, and connecting inorganic LEDs on a flexible substrate. This will finally allow the miniaturization of the technology, which beats OLEDs in brightness, energy efficiency, durability, and moisture resistance.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.


If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less