The October 2022 issue of IEEE Spectrum is here!

Close bar

Flash Memory Survives 100 Million Cycles

A little heat lets flash beat typical 10 000-cycle limit

3 min read
Flash Memory Survives 100 Million Cycles
Illustration: Brandon Palacio; Original Images: iStockphoto

In the world of memory chips, flash is king. But it’s not perfect. It wears out after being programmed and erased about 10 000 times. That’s fine for a USB dongle that you’ll probably lose in a year, but not ideal for the solid-state drives of server farms. And the same problem keeps manufacturers from using flash to replace other types of computer memories. This month, at the 2012 IEEE International Electron Devices Meeting, engineers from Macronix plan to report the invention of a self-healing NAND flash memory that survives more than 100 million cycles.


What’s more, that may not even be the real limit. “We do not know what would eventually cause the device to fail, since we have not seen the end-of-life signals yet,” says Hang‑Ting Lue, a project deputy director at Macronix, which is located in Hsinchu, Taiwan. To test for 1 billion cycles would take several months, he says.


Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper
Green

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}