The February 2023 issue of IEEE Spectrum is here!

Close bar

Femtosecond Lasers Create 3-D Midair Plasma Displays You Can Touch

Floating dots of plasma make tiny, touchable images

3 min read
Femtosecond Lasers Create 3-D Midair Plasma Displays You Can Touch
Image: Yoichi Ochiai/University of Tsukuba

Science fiction has promised us three-dimensional midair displays since at least the first Star Wars movie. We’ve seen a few holographic technologies that have come close; they rely on optical tricks of one sort or another to make it seem like you’re seeing an image hovering in front of you.

There’s nothing wrong with such optical tricks (if you can get them to work), but the fantasy is to have true midair pixels that present no concerns about things like viewing angles. This technology does exist, and has for a while, in the form of laser-induced plasma displays that ionize air molecules to create glowing points of light. If lasers and plasma sound like a dangerous way to make a display, that's because it is. But Japanese researchers have upped the speed of their lasers to create a laser plasma display that’s touchably safe.

Here’s what a conventional (if that’s a word that we can apply to this technology) laser-induced plasma display looks like, from a Japanese company called Aerial Burton:

Those brightly glowing voxels (pixels in three dimensional space) are air molecules that have been ionized at the focal point of an infrared laser and are releasing extra energy in the form of bluish-white photons. The plasma doesn’t last long, so the way to make a display is to use a laser that scans through a volume of air very quickly, firing tens or hundreds of of thousands of times per second to create a sequence of short-lived (nanosecond-scale) voxels that create the effect of a moving image.

However, a nanosecond-scale plasma burst still contains a significant amount of energy; you don’t want to go walking through one of these displays, because it will burn you. Researchers from the University of Tsukuba, Utsunomiya University, Nagoya Institute of Technology, and the University of Tokyo have developed a “Fairy Lights” display system that uses femtosecond lasers instead. The result is a plasma display that’s safe to touch.

Each one of those dots (voxels) is being generated by a laser that’s pulsing in just a few tens of femtoseconds. A femotosecond is one millionth of one billionth of one second.  The researchers found that a pulse duration that minuscule doesn't result in any appreciable skin damage unless the laser is firing at that same spot at one shot per millisecond for a duration of 2,000 milliseconds. The Fairy Lights display keeps the exposure time (shots per millisecond) well under that threshhold:

Our system has the unique characteristic that the plasma is touchable. It was found that the contact between plasma and a finger causes a brighter light. This effect can be used as a cue of the contact. One possible control is touch interaction in which floating images change when touched by a user. The other is damage reduction. For safety, the plasma voxels are shut off within a single frame (17 ms = 1/60 s) when users touch the voxels. This is sufficiently less than the harmful exposure time (2,000 ms).

Even cooler, you can apparently feel the plasma as you touch it:

Shock waves are generated by plasma when a user touches the plasma voxels. The user feels an impulse on the finger as if the light has physical substance. The detailed investigation of the characteristics of this plasma-generated haptic sensation with sophisticated spatiotemporal control is beyond the scope of this paper.

Well, that’s too bad, but maybe we’ll get more details in the next paper.

imgImages: Yoichi Ochiai/University of Tsukuba

As you can see from the pics and video, these displays are tiny: the workspace encompasses just eight cubic millimeters. The spatiotemporal resolution is relatively high, though, at up to 200,000 voxels per second, and the image framerate depends on how many voxels your image needs.

To become useful as the consumer product of our dreams, the display is going to need to scale up. The researchers suggest that it’s certainly possible to do this with different optical devices. We’re holding out for something that’s small enough to fit into a phone or wristwatch, and it’s not that crazy to look at this project and believe that such a gadget might not be so far away.

The Conversation (0)

The Inner Beauty of Basic Electronics

Open Circuits showcases the surprising complexity of passive components

5 min read
Vertical
A photo of a high-stability film resistor with the letters "MIS" in yellow.
All photos by Eric Schlaepfer & Windell H. Oskay
Blue

Eric Schlaepfer was trying to fix a broken piece of test equipment when he came across the cause of the problem—a troubled tantalum capacitor. The component had somehow shorted out, and he wanted to know why. So he polished it down for a look inside. He never found the source of the short, but he and his collaborator, Windell H. Oskay, discovered something even better: a breathtaking hidden world inside electronics. What followed were hours and hours of polishing, cleaning, and photography that resulted in Open Circuits: The Inner Beauty of Electronic Components (No Starch Press, 2022), an excerpt of which follows. As the authors write, everything about these components is deliberately designed to meet specific technical needs, but that design leads to “accidental beauty: the emergent aesthetics of things you were never expected to see.”

From a book that spans the wide world of electronics, what we at IEEE Spectrum found surprisingly compelling were the insides of things we don’t spend much time thinking about, passive components. Transistors, LEDs, and other semiconductors may be where the action is, but the simple physics of resistors, capacitors, and inductors have their own sort of splendor.

High-Stability Film Resistor

A photo of a high-stability film resistor with the letters "MIS" in yellow.

All photos by Eric Schlaepfer & Windell H. Oskay

This high-stability film resistor, about 4 millimeters in diameter, is made in much the same way as its inexpensive carbon-film cousin, but with exacting precision. A ceramic rod is coated with a fine layer of resistive film (thin metal, metal oxide, or carbon) and then a perfectly uniform helical groove is machined into the film.

Instead of coating the resistor with an epoxy, it’s hermetically sealed in a lustrous little glass envelope. This makes the resistor more robust, ideal for specialized cases such as precision reference instrumentation, where long-term stability of the resistor is critical. The glass envelope provides better isolation against moisture and other environmental changes than standard coatings like epoxy.

15-Turn Trimmer Potentiometer

A photo of a blue chip
A photo of a blue chip on a circuit board.

It takes 15 rotations of an adjustment screw to move a 15-turn trimmer potentiometer from one end of its resistive range to the other. Circuits that need to be adjusted with fine resolution control use this type of trimmer pot instead of the single-turn variety.

The resistive element in this trimmer is a strip of cermet—a composite of ceramic and metal—silk-screened on a white ceramic substrate. Screen-printed metal links each end of the strip to the connecting wires. It’s a flattened, linear version of the horseshoe-shaped resistive element in single-turn trimmers.

Turning the adjustment screw moves a plastic slider along a track. The wiper is a spring finger, a spring-loaded metal contact, attached to the slider. It makes contact between a metal strip and the selected point on the strip of resistive film.

Ceramic Disc Capacitor

A cutaway of a Ceramic Disc Capacitor
A photo of a Ceramic Disc Capacitor

Capacitors are fundamental electronic components that store energy in the form of static electricity. They’re used in countless ways, including for bulk energy storage, to smooth out electronic signals, and as computer memory cells. The simplest capacitor consists of two parallel metal plates with a gap between them, but capacitors can take many forms so long as there are two conductive surfaces, called electrodes, separated by an insulator.

A ceramic disc capacitor is a low-cost capacitor that is frequently found in appliances and toys. Its insulator is a ceramic disc, and its two parallel plates are extremely thin metal coatings that are evaporated or sputtered onto the disc’s outer surfaces. Connecting wires are attached using solder, and the whole assembly is dipped into a porous coating material that dries hard and protects the capacitor from damage.

Film Capacitor

An image of a cut away of a capacitor
A photo of a green capacitor.

Film capacitors are frequently found in high-quality audio equipment, such as headphone amplifiers, record players, graphic equalizers, and radio tuners. Their key feature is that the dielectric material is a plastic film, such as polyester or polypropylene.

The metal electrodes of this film capacitor are vacuum-deposited on the surfaces of long strips of plastic film. After the leads are attached, the films are rolled up and dipped into an epoxy that binds the assembly together. Then the completed assembly is dipped in a tough outer coating and marked with its value.

Other types of film capacitors are made by stacking flat layers of metallized plastic film, rather than rolling up layers of film.

Dipped Tantalum Capacitor

A photo of a cutaway of a Dipped Tantalum Capacitor

At the core of this capacitor is a porous pellet of tantalum metal. The pellet is made from tantalum powder and sintered, or compressed at a high temperature, into a dense, spongelike solid.

Just like a kitchen sponge, the resulting pellet has a high surface area per unit volume. The pellet is then anodized, creating an insulating oxide layer with an equally high surface area. This process packs a lot of capacitance into a compact device, using spongelike geometry rather than the stacked or rolled layers that most other capacitors use.

The device’s positive terminal, or anode, is connected directly to the tantalum metal. The negative terminal, or cathode, is formed by a thin layer of conductive manganese dioxide coating the pellet.

Axial Inductor

An image of a cutaway of a Axial Inductor
A photo of a collection of cut wires

Inductors are fundamental electronic components that store energy in the form of a magnetic field. They’re used, for example, in some types of power supplies to convert between voltages by alternately storing and releasing energy. This energy-efficient design helps maximize the battery life of cellphones and other portable electronics.

Inductors typically consist of a coil of insulated wire wrapped around a core of magnetic material like iron or ferrite, a ceramic filled with iron oxide. Current flowing around the core produces a magnetic field that acts as a sort of flywheel for current, smoothing out changes in the current as it flows through the inductor.

This axial inductor has a number of turns of varnished copper wire wrapped around a ferrite form and soldered to copper leads on its two ends. It has several layers of protection: a clear varnish over the windings, a light-green coating around the solder joints, and a striking green outer coating to protect the whole component and provide a surface for the colorful stripes that indicate its inductance value.

Power Supply Transformer

A photo of a collection of cut wires
A photo of a yellow element on a circuit board.

This transformer has multiple sets of windings and is used in a power supply to create multiple output AC voltages from a single AC input such as a wall outlet.

The small wires nearer the center are “high impedance” turns of magnet wire. These windings carry a higher voltage but a lower current. They’re protected by several layers of tape, a copper-foil electrostatic shield, and more tape.

The outer “low impedance” windings are made with thicker insulated wire and fewer turns. They handle a lower voltage but a higher current.

All of the windings are wrapped around a black plastic bobbin. Two pieces of ferrite ceramic are bonded together to form the magnetic core at the heart of the transformer.

This article appears in the February 2023 print issue.

{"imageShortcodeIds":[]}