The December 2022 issue of IEEE Spectrum is here!

Close bar

Building Bloodhound: The Fastest Car in the World

Jets, rockets, and computer models will help a British team break 1,600 km/h

10 min read
Building Bloodhound: The Fastest Car in the World
Photo: Stefan Marjoram

In a suburb of Bristol, in western England, not far from the Welsh border, a band of engineers are building a machine that they hope will make the biggest jump in the century-long history of the official world land-speed record, taking it from a smidgen above the speed of sound to 1,600 kilometers (1,000 miles) per hour. That's roughly the cruising speed of a fighter aircraft, but it's considerably harder to achieve at ground level, where the atmosphere is far thicker. And there's the not-insignificant danger that the vehicle will end up plowing into the ground.

Even in the complicated business of breaking such speed records, Bloodhound represents a remarkable array of firsts in terms of technology, engineering techniques, and propulsion systems, all set to send the missile-shaped car down a nearly 20-km-long racetrack in the South African desert toward the end of this year. Perhaps the most striking of those firsts is the project's method of verifying the safety of the design. To a degree that would be unthinkable today, earlier record attempts relied on overengineering, best-guess estimates, intuition, and sheer luck. Earlier generations of engineers would often discover a car's limits with destructive testing—running it until it broke. Now modeling and data acquisition, the preferred tools for designing both aircraft and cars, are making headway in this most extreme of sports. Bloodhound is the first project of its kind to apply them. By the time the car makes its great bid for the record in South Africa, it will have done the run 1,000 times in silico.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less

Computing With Chemicals Makes Faster, Leaner AI

Battery-inspired artificial synapses are gaining ground

5 min read
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less