Fantastic 4G

Hundreds of telecoms will invest in 4G LTE networks in 2012

7 min read
Illustration by Paul Tebbott
Illustration: Paul Tebbott

It’s 5:00 in the afternoon. Do you know how much data your smartphone apps are sucking out of the ether?

It’s probably at least 10 megabytes per hour, and it may be as much as 115 MB/h, according to a recent study by the British firm Virgin Media Business. In other words, depending on what you’re using it for, your phone or tablet might be consuming—or more likely struggling but failing to consume—the data equivalent of about 100 medium-size books every hour.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

New Faraday Cages Can Be Switched Off and On

Built out of a novel material called MXene, these cages could block and allow signals as desired

3 min read
New Faraday Cages Can Be Switched Off and On

Radio waves interacting with a MXene film.

Chong Min Koo

Advanced new Faraday cages—the metal mesh enclosures that can block wireless signals—can also be switched on and off for reversible protection against noise, a new study finds.

In addition, these new shields can be easily fabricated through a technique akin to spray-painting, which could help them find use in electronics, researchers say.

Similarly to the way window blinds adjust how much visible light enters a room, engineers want dynamic control over the electromagnetic waves used in wireless communications. This ability would let devices receive and transmit signals when desired but also protect them against electromagnetic interference, such as static and jamming, and help them avoid being spied on.

Keep Reading ↓Show less

Designing a Silicon Photonic MEMS Phase Shifter With Simulation

Engineers at EPFL used simulation to design photonic devices for enhanced optical network speed, capacity, and reliability

4 min read
Designing a Silicon Photonic MEMS Phase Shifter With Simulation
EPFL

This sponsored article is brought to you by COMSOL.

The modern internet-connected world is often described as wired, but most core network data traffic is actually carried by optical fiber — not electric wires. Despite this, existing infrastructure still relies on many electrical signal processing components embedded inside fiber optic networks. Replacing these components with photonic devices could boost network speed, capacity, and reliability. To help realize the potential of this emerging technology, a multinational team at the Swiss Federal Institute of Technology Lausanne (EPFL) has developed a prototype of a silicon photonic phase shifter, a device that could become an essential building block for the next generation of optical fiber data networks.

Keep Reading ↓Show less
{"imageShortcodeIds":["32366883","32366901","32366913"]}