Watch This Robot Crawl on a High-Voltage Power Line

Inspection of high-voltage power lines is costly, difficult, and dangerous. It's the perfect job for a robot

2 min read
Watch This Robot Crawl on a High-Voltage Power Line

hibot expliner

Inspection of high-voltage power lines is costly, difficult, and a dangerous job even for skilled workers. Which means it's the perfect job for a robot.

We first wrote about Expliner, an incredible inspection robot that balances on power lines like an acrobat, more than a year ago. Since then, HiBot, the Japanese company that developed Expliner, has gone on several inspection jobs, remote operating the robot as it crawls on 500-kilovolt live lines.

The company is now gearing up to deliver the robot to customers, first in Japan, and later abroad as well.

hibot expliner

Expliner is like a wheeled cable car that rolls along the upper pair of bundled cables. In addition to its manipulator arm, it carries laser sensors, to spot corrosion or scratches, and a high-definition camera, which records details of bolts and spacers far more effectively than even a human worker.

HiBot says that Expliner is a semi-autonomous robot.

"There is always a human in the control loop, but the basic repetitive tasks are automated," says Michele Guarnieri," a HiBot co-founder. "Tasks that require a high degree of precision, like maintaining balance or moving parts to a certain angle, are also automated."

He explains that the robot can inspect up to four cables simultaneously, and software automatically checks all recorded videos and alert users about potential damages or problems on the lines.

HiBot has recently released a new video that shows off the robot's capabilities, including being able to go over cable suspension clamps through a series of acrobatic maneuvers using a dangling counterweight to shift the robot's center of gravity. Watch: 

HiBot, which spun off from the laboratory of Tokyo Tech roboticist Shigeo Hirose (known for his incredible snakebots), has recently won an award for the Expliner robot from Japan's Ministry of Economy, Trade, and Industry.

And if you're wondering, "Expliner doesn't fall," claims Guarnieri. "It's equipped with safety devices that prevent the robot from falling, even in case of strong winds."

hibot expliner

Images and video: HiBot

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less