Error Correction Moves Quantum Computing Closer to Reality

A new superconducting system operates with 99 percent accuracy

4 min read
Error Correction Moves Quantum Computing Closer to Reality
Very Correct Qubits: A superconducting circuit could lead to practical quantum computing by allowing for error-correction algorithms.
Photo: Erik Lucero

For quantum computing to ever fulfill its promise, it will have to deal with errors. That’s been a real problem until recently, because although scientists have come up with error-correction codes, the quantum machines available couldn’t use them. Now researchers have finally created a small quantum-computing array that for the first time performs with enough accuracy to allow for error correction, paving the way toward practical machines that could outperform ordinary computers.

Today’s classical computers perform calculations using bits, which can be either 1 or 0. Quantum computers get their potentially amazing ability to make many simultaneous calculations by using quantum bits, or qubits, which can exist as both 1 and 0 at the same time. The challenge is that such systems must use error correction to preserve the fragile quantum states of qubits long enough to run calculations.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why Functional Programming Should Be the Future of Software Development

It’s hard to learn, but your code will produce fewer nasty surprises

11 min read
A plate of spaghetti made from code
Shira Inbar

You’d expectthe longest and most costly phase in the lifecycle of a software product to be the initial development of the system, when all those great features are first imagined and then created. In fact, the hardest part comes later, during the maintenance phase. That’s when programmers pay the price for the shortcuts they took during development.

So why did they take shortcuts? Maybe they didn’t realize that they were cutting any corners. Only when their code was deployed and exercised by a lot of users did its hidden flaws come to light. And maybe the developers were rushed. Time-to-market pressures would almost guarantee that their software will contain more bugs than it would otherwise.

Keep Reading ↓Show less