Electronic Noses Sniff Success

E-noses will soon be ubiquitous, thanks to printed organic semiconductors

11 min read
Electronic Noses Sniff Success
Image: Mark Hooper

Several hundred years ago, village doctors in rural China diagnosed diabetes by the characteristically sweet smell of a patient's breath. Today hospitals use a battery of blood tests and laboratory analyses to make that same diagnosis, but doctors may soon be sniffing their patients' breath again. This time the doctors will have electronic noses small and cheap enough to carry in their pockets.

This e-nose will be the culmination of decades of work at countless laboratories, where researchers have sought to create a tiny, cheap, automatic sniffer that would let wine bottles monitor the aging of their contents, allow meat packages to flag spoilage, and enable mailboxes to check for bombs. Imagine barroom coasters that double as Breathalyzers, bumper stickers that monitor car emissions. Until now, it's been just so much sci-fi.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Xiaomi Builds a Humanoid Robot for Some Reason

CyberOne is a new biped from China, but why does it exist?

3 min read
A black and white humanoid robot lies face down on dirt after appearing to have just fallen

Xiaomi, a large Chinese consumer electronics manufacturer, has introduced a full size bipedal humanoid robot called CyberOne. It’s 177 centimeters in height and weighs 52 kilograms, and it comes with 21 degrees of freedom, with “a curved OLED module to display real-time interactive information.” Nifty! So, uh, its actual purpose is... what exactly?

Keep Reading ↓Show less

Climate-Friendly Ethereum Is One Merge Away

Successful tests set the stage for the cryptocurrency’s switchover in September

3 min read
A large blue lit data center. A figure wearing a white cleanroom suit walks towards a green lit room.

Here pictured is Evobits crypto farm, an Ethereum mining rig in Romania.

Akos Stiller/Bloomberg/Getty Images

The merge is coming, and crypto may never be the same.

“The merge” is shorthand for Ethereum’s rapidly approaching switch from one compute-intensive form of blockchain verification to a much less resource-heavy method. In other words, the cryptocurrency will be switching from proof-of-work to proof-of-stake. This move, which is years in the making, changes how Ethereum maintains consensus—and drastically slashes power consumption.

“Ethereum’s power-hungry days will soon be numbered,” says Terence Tsao, Ethereum protocol developer at Prysmatic Labs. “And I hope that’s true for the rest of the industry, too.”

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓Show less