Electrical Stimulator to Prevent Migraines Receives FDA Approval

Zapping a cranial nerve for 20 minutes a day may help migraine sufferers

2 min read
Electrical Stimulator to Prevent Migraines Receives FDA Approval

Pharmaceuticals are so 20th century. Medicine's buzzy new trend is electroceuticals: ways to treat ailments with electricity rather than chemicals. Yesterday, the U.S. Food and Drug Administration approved a new entry into this field, when it gave the nod to a device that prevents migraines by electrically stimulating nerves in the cranium. The device is manufactured by the Belgian company STX-Med, and is already approved for commercial sales in Europe, Canada, and Australia.  

Cefaly, a battery-powered device that resembles a tiara or a headband, can be used for daily 20-minute sessions. The FDA says this treatment may help migraine patients who can't tolerate or don't respond to medication.

The device works by stimulating the trigeminal nerve, the largest cranial nerve, which carries sensory information from the face to the brain, and which has also been associated with the pain of migraine headaches. According to the Cefaly website, its mechanism is based on the gate control theory of pain. By providing sensory input to the nerves, the device essentially keeps a neural gate closed to pain input. This theory explains why you rub your elbow after banging it—the sensory stimulus overrides the pain stimulus, which is transmitted to the brain on different nerve fibers. 

The FDA's approval is based on several studies conducted in Europe. One study of 67 migraine patients, published last month in Neurology, found that Cefaly users experienced significantly fewer migraines over the course of a month than patients who used a placebo device. However, in a user satisfaction survey, only 54 percent of patients who rented a trial device said they wanted to purchase the device. As those users who returned the Cefaly were shown to have used the device for only about half the recommended time, it seems possible that migraine patients are still more comfortable with popping a pill than wearing a tiara around the house.  

The product video provides more information, although there's a good bit of jargon to deal with. It may help to know that nociceptors are the receptors on neurons that respond to a pain stimulus. 

Image and video: Cefaly

The Conversation (0)

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less