The December 2022 issue of IEEE Spectrum is here!

Close bar

Electric Rainmaking Technology Gets Mexico's Blessing

But for now, doubters prevail north of the border

5 min read

From at least the early 1940s to the end of the 20th century, it always rained more in the state of Jalisco, in central Mexico, than in its neighbor Aguascalientes. But in 2000, on a patch of parched pasture in Aguascalientes, workers from Mexico City-based Electrificación Local de la Atmósfera Terrestre SA (ELAT) erected a peculiar field of interconnected metal poles and wires somewhat resembling the skeleton of a carnival tent. Since then, about as much rain has fallen on the plains of Aguascalientes as on its more lush neighbor.

The brainchild of a fractious group of Russian émigrés, the poles and wires are in fact a network of conductors meant to ionize the air. If the technique is done properly, the thinking goes, the natural current between the earth and the ionosphere is amplified, leading--through a mechanism that is not fully understood--to rainfall. There are now 17 such installations in six states in Mexico, and in January, federal government agencies decided to back construction and operation of 19 more by 2006, potentially altering the weather in much of parched north and central Mexico. Meanwhile, by May, ELAT's competitor Earthwise Technologies Inc., of Mexico City and Dallas, could win the right to establish ionization stations in southwest Texas's water-starved Webb County, which would make it the first such installation in the United States.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less