5 Robots That Can Help Make the Planet Greener

Recycling robots, autonomous cars, telepresence avatars, and other automatons for a greener planet

3 min read
5 Robots That Can Help Make the Planet Greener

planet earth day nasa

Today is Earth Day, and one of my coworkers was telling me about all the little things we can do to help preserve the beautiful place we all live in. That got me thinking, naturally, on things that robots could do to help preserve the planet. Let’s not be disingenuous: robots, like all technologies, are not a panacea. More automation could mean less carbon emissions and less waste, but it could also mean the opposite—it all depends on how we use it. Below I’m listing five robotic technologies that could potentially help to make the planet greener. If you have more robots to add to the list, or if you disagree that robots are Earth-friendly creations, leave a comment below.

1. Recycling robots. Waste is a huge problem all over the world, and many people do their share by separating plastic, paper, glass, and other trash, which is then collected, resorted, and (hopefully) recycled. To me it looks like a hugely inefficient process screaming for more automation. The only project I’ve heard of in this area is an Italian mobile robot called Dustbot [photo below], which picks up trash at people’s homes and brings it to a recycling facility. It’s cute, but just a prototype. If we don’t want to end up in a landfill of a planet as depicted in WALL-E, we need much better recycling bots.

2. Telepresence robots. Air travel is responsible for a sizable fraction of the world’s carbon emissions. It’s also costly. That’s why many corporations have reduced business trips and embraced videoconference meetings. Now there’s another option: telepresence robots. The idea is simple: You embody a robot, controlled over the Net, that acts as your proxy at a remote location. And you can choose from many different types of body. You can be the skinny Anybots QB [video below], or the large-headed Willow Garage Texai, or you if you have US $200,000 to spare you can even get an android copy of yourself.

3. Harvesting robots. Agriculture has become highly industrialized and wasteful, with bad results for the environment and for us, who literally eat the fruits of this process. Could more automation improve this scenario? I don’t know. I want to believe that robots could replace some of today’s wasteful practices with more efficient ones that would save energy and fuel, cut down on fertilizers and pesticides, and as a result make crops more sustainable. (How harvesting robots would impact labor is another issue that only adds complexity to this problem.) Companies trying to bring robots into the field include Vision Robotics, which is developing an autonomous grape-vine pruner [video below], and Harvest Automation, which has created a small mobile robot that picks up and moves potted plants in nurseries.

3. Personal mobility vehicles. The greenest mode of transportation is—you guessed it—walking. But we can’t walk everywhere, of course. At the same time, using a car to drive for short distances is very wasteful. That’s why we need a way of going places that doesn’t involve using our legs or our gas-guzzling automobiles. Enter the personal mobility vehicle—a small machine designed to take a single person for short rides. The Segway was the first in this category, but unfortunately many cities banned it from the streets. We still think, though, that these vehicles will play an important role in reducing our dependence on cars (laws and pedestrians can’t get in the way of the future!). Our favorite prototype? Take a look at Honda’s futuristic unicycle called U3-X [video below].

5. Autonomous cars. As cool as machines like the U3-X above might be, commuting on a unicycle might not work for everyone. But if we’re going to continue using cars, can we at least make them smarter? We’re not just talking about driverless cars, vans, and even buses that researchers have recently demonstrated. Sure, these autonomous vehicles could in principle help us drive a bit more efficiently by finding the best routes and optimizing acceleration and braking of the vehicles. But we also need smarter cars that interact with each other and the road, so everyone moves along smoothly and safely. One example is the European project SARTRE [video below], which is studying whether autonomous convoys of vehicles improve safety and save fuel.

Image: NASA

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less