The December 2022 issue of IEEE Spectrum is here!

Close bar

Doping of Quantum Dots Promises Both Improved Efficiency and Lower Costs of Solar Cells

Making quantum dots perform like n-type and p-type semiconductors could make solar cells cheaper and more efficient

1 min read
Doping of Quantum Dots Promises Both Improved Efficiency and Lower Costs of Solar Cells

While carbon nanotubes have been the darling of the nanoparticle universe, quantum dots have been that mysterious and alluring nanoparticle that seems to keep researchers coming back for more.

We’ve seen them being proposed as the backbone for quantum computers and we have observed them being used to improve LED lighting.

One application area that always gets some attention when the topic of quantum dots is discussed is solar power. They get presented as a possible silver bullet for spiking the efficiency of solar cells with the proposed abilities either to enable electron multiplication or to create so-called “hot-carrier” cells. These proposals are not without skeptics.

But if the higher efficiency promised by quantum dots should fall short, then we still have the potential for them making solar power cheaper.

It is in this latter application niche that research covered here on the pages of Spectrum in which quantum dots have been doped that quantum dots look more attractive for solar cells.

In the Spectrum article, Eran Rabini, of Tel Aviv University and one of the lead researchers on the project, when commenting on the research’s potential for producing junctions consisting of films made of n-type and p-type nanocrystals suggests, "We might be able to make them cheaper (solar cells, ed.), and maybe at the end of the road they would also be more efficient."

I like when the terms “more efficient” and “cheaper” are brought together when discussing solar cells. 

The Conversation (0)

The Transistor at 75

The past, present, and future of the modern world’s most important invention

2 min read
A photo of a birthday cake with 75 written on it.
Lisa Sheehan
LightGreen

Seventy-five years is a long time. It’s so long that most of us don’t remember a time before the transistor, and long enough for many engineers to have devoted entire careers to its use and development. In honor of this most important of technological achievements, this issue’s package of articles explores the transistor’s historical journey and potential future.

Keep Reading ↓Show less