The July 2022 issue of IEEE Spectrum is here!

Close bar

DNA Robot Could Deliver Cancer Drugs

Biomolecular machines might someday make you well without you ever knowing you were sick

3 min read

22 December 2010—This situation occurs far too often: A person arrives at his doctor’s office complaining of some unknown ailment, only to find out that cancer has invaded his body and that it is too late for any of the standard treatments to work. But a group of scientists dream that cancer and other maladies could be diagnosed and treated without the person ever knowing anything had been amiss. The scientists, at the Hebrew University of Jerusalem, in Israel, the University of Liege, in Belgium, and the University of California, Los Angeles, say they have built a molecular machine out of DNA that could act as a logic device for chemical sensing and medicine delivery. Unlike earlier DNA machines, the new device has a degree of memory, making it potentially programmable.

 The machine comprises three DNA "tweezers." These molecular mechanisms, which have been around for a decade, take advantage of the mechanical properties of and the chemical bonding relationships between DNA’s four bases—adenine, cytosine, guanine, and thymine. It is possible to connect strands of these bases to create two rigid arms with a flexible hinge between them. Scientists already know that when a strand is added that bridges the arms of a tweezer, the new strand pulls the arms together, closing the tweezer. An additional nucleic acid acts as an anti-linker, stripping away the DNA strand and reopening the tweezer.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓Show less