Detecting Fake Pills With Nuclear Quadrupole Resonance

A technique once considered for explosives detection might save more lives if used to verify the integrity of medicines


10 min read
Illustration of a half blurred pill.
Photo: Adam Voorhes/Gallery Stock

When you purchase medicine at the drugstore, you assume that it’s what you think it is and that the active ingredient in the drug is present in the specified concentration. Unfortunately, your assumption might be all wrong. Counterfeit and substandard medicines have become widespread, particularly in low- and middle-income countries with weak regulatory systems. Indeed, according to the World Health Organization (WHO), one out of 10 medicines sold in developing countries should be considered “substandard.” Your drug could even be an outright fake.

“But I live in the United States,” you may say. “The medicines at my pharmacy are regulated by the U.S. Food and Drug Administration, so it must be the genuine article.” Unfortunately, even the United States and other higher-income countries aren’t immune to this scourge. Since 2012, smugglers have been caught selling fake drugs to more than 3,000 doctors, clinics, and hospitals across the United States.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

“Great Capacity!” “Less Latency!”—How Wi-Fi 7 Achieves Both

New features will roll out in some devices by the end of 2022

4 min read
A purple circle with the number 7 in the middle. Curved purple lines radiate out from the circle to the left and right.
Shutterstock

New generations of Wi-Fi have sprung onto the scene at a rapid pace in recent years. After a storied five-year presence, Wi-Fi 5 was usurped in 2019 by Wi-Fi 6, only for the latter to be toppled a year later in 2020 by an intermediate generation, Wi-Fi 6E. And now, just a couple years later, we’re on the verge of Wi-Fi 7.

Wi-Fi 7 (the official IEEE standard is 802.11be) may only give Wi-Fi 6 a scant few years in the spotlight, but it’s not just an upgrade for the sake of an upgrade. Several new technologies—and some that debuted in Wi-Fi 6E but haven’t entirely yet come into their own—will allow Wi-Fi 7 routers and devices to make full use of an entirely new band of spectrum at 6 gigahertz. This spectrum—first tapped into with Wi-Fi 6E—adds a third wireless band alongside the more familiar 2.4-GHz and 5-GHz bands.

Keep Reading ↓ Show less

Video Friday: Robot Training

3 min read
A red bipedal robot with wheels for feet and hands stands upright at the top of steps with the city of Philadelphia in the background

Your weekly selection of awesome robot videos

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

IEEE ARSO 2022: 28–30 May 2022, LONG BEACH, CALIF.
RSS 2022: 21 June–1 July 2022, NEW YORK CITY
ERF 2022: 28–30 June 2022, ROTTERDAM, NETHERLANDS
RoboCup 2022: 11–17 July 2022, BANGKOK
IEEE CASE 2022: 20–24 August 2022, MEXICO CITY
CLAWAR 2022: 12–14 September 2022, AZORES, PORTUGAL
CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today’s videos!

Keep Reading ↓ Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓ Show less