The December 2022 issue of IEEE Spectrum is here!

Close bar

Detecting and Correcting Methane Leakage: Is a Technical Fix Ahead?

This may be a case where there actually is a silver bullet

3 min read
Detecting and Correcting Methane Leakage: Is a Technical Fix Ahead?

It's fashionable and sensible in the complicated domains where technology and policy intersect to be suspicious of any narrowly conceived solution. "There's no technical fix," goes the usual refrain (which I certainly have voiced plenty of times myself). In the case of methane leakage from natural gas production and distribution systems, however, there really may be a combination of technical fixes on the horizon. Because of methane's high global warming potential relative to carbon dioxide, detecting and correcting methane leakage is going to be very important in the years ahead.

Two and a half years ago, the Maryland company Earth Networks announced it would start building a network of sensors to directly monitor greenhouse gas emissions on a regional basis, working with the Scripps Institution of Oceanography, and others. Each processing unit consists of a US $50 000 box, along with elaborate calibration software that Earth Network has developed with scientific partners at Scripps, NIST and NOAA, and connects by a tube with sensors installed 100 meters up on some existing tower [photo]. The initial plan called for putting about 100 units in the United States, 25 in Europe, and 25 other places in the world.

Earth Networks CEO Robert Marshall says that 28-30 units are now installed, mostly in the U.S. Northeast but also in the Los Angeles area and some other places. One of the company's units has taken over the famous job of monitoring global CO2 atop Hawaii's Mauna Loa and produced the definitive measurement several months ago of the Keeling curve's crossing the 400 ppm threshold.

Earth Networks, originally known as AWS Convergence Technology, makes its living primarily by delivering very finely grained weather forecasts and severe weather alerts. Its well-know trademarked product, WeatherBug, is widely used by clubs, schools, and planners of major sports and entertainment events. Before the terrible Moore, Oklahoma tornado last spring, the company's networks detected dense in-cloud lightning, an early warning signal of the catastrophic twister. As for the greenhouse gas monitoring network that Earth Networks is installing, this work is being done at present on what you might call a pro bono basis—or, if you prefer, as a speculative venture anticipating high future demand for the new service.

These days, says Marshall, there is little demand for GHG monitoring at the national level because there is no real issue of national compliance at present. The system established by the Kyoto Protocol in 1997 has lost traction, and the world awaits a new system of mandatory GHG cuts, to be formulated at a conference in Paris at the end of 2015. But in the meantime, Marshall points out, two regional GHG reduction programs have been established in the United States—in the Northeast and in California—and many cities here and overseas are adopting objectives that will require monitoring.

As the GHG detection networks get built out, they will be able to determine how much methane is escaping from major fracking fields and from aging urban gas distribution systems, to name the two most important situations giving rise to acute concern. At present, reports of emissions from gas fields are often based on one-day spot checks done by aircraft flyovers. "There's nobody else out there doing what we do," says Marshall. "Permanently installing sensors that take data continually and can monitor emissions from an entire gas field, as opposed to just individual wells."

Once the Earth Networks GHG detectors are able to provide alerts to situations where methane leakage is high, then newly developed portable monitors can be used to pinpoint the exact spots where leaks are highest, so that corrective measures can be taken. One such portable device, a "gasbot" developed in Sweden, was described in a recent post here; another, described in a recent New York Times article, was developed by instrument maker Picarro, the same company that makes the Earth Networks GHG boxes. Thus, the region-wide and portable monitoring devices have complementary roles to play so that, to the extent methane leakage turns out to be a really serious problem, it may also turn out to be a fixable problem.

Photo: Earth Networks

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less