The December 2022 issue of IEEE Spectrum is here!

Close bar

Deflating the Air Car

Green cars could run on compressed air instead of batteries. But don’t rely on the new AirPod minicars to prove it

11 min read
Photo of Guy and Cyril Nègre, the father-and-son team behind MDI.
Guy and Cyril Nègre, the father-and-son team behind MDI.
Photo: Vincent Lignier

A new celebrity with a lusciously curved body is turning heads on France’s Côte d’Azur. No, not that kind of body. This one belongs to the AirPod, a 220-kilogram car with a sculpted composite shell and a back-to-the-future energy supply: 80 kg of air compressed to 350 times sea-level atmospheric pressure, roughly 350 bars. The engine of this tiny three-seater converts that air into mechanical energy, just as a pneumatic jackhammer does to blast apart concrete.

The AirPod won’t exactly tear up the road, though: The current version tops out at 45 kilometers per hour (28 miles per hour). And yet there’s definitely something addictive in its joystick steering and featherlike suspension. With expanding air pumping its pistons, the exhaust is literally a superchilled breeze. Grab the stick, step on the accelerator, and any guilt you may be harboring from driving an ordinary smog-producing carbon spewer falls away. Wouldn’t life be great if everybody got around town in these clean little machines?

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Poll: Would You Want to Work a Shorter Week?

Weigh in with your thoughts on a four-day workweek

2 min read
Person holding a giant sized pencil standing next to a giant sized calendar with days crossed out to show a four-day workweek.
iStock

When I worked for a company in Texas a few years ago, one of the benefits I enjoyed was a four-and-a-half-day workweek. The system enabled my colleagues and me to run some personal errands, see our doctors, and pick up our kids from school, among other activities.

The COVID-19 pandemic required many companies to adopt a flexible work schedule to keep their operations open. Many allowed their employees to work from home full time. Nowadays plenty of those employers are trying to persuade their workers to return to the office full time, but they are facing some resistance.

One solution some companies are trying is a four-day, 32-hour workweek for the same pay.

​Does your company offer a four-day workweek?

Would you like to work a four-day workweek?

Keep Reading ↓Show less

Xiaomi’s Humanoid Drummer Beats Expectations

Solving drum-playing helped quest for whole-body control

3 min read
A black and white humanoid robot sits at an electronic drum kit

When Xiaomi announced its CyberOne humanoid robot a couple of months back, it wasn’t entirely clear what the company was actually going to do with the robot. Our guess was that rather than pretending that CyberOne was going to have some sort of practical purpose, Xiaomi would use it as a way of exploring possibilities with technology that may have useful applications elsewhere, but there were no explicit suggestions that there would be any actual research to come out of it. In a nice surprise, Xiaomi roboticists have taught the robot to do something that is, if not exactly useful, at least loud: to play the drums.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.