CyPhy Works' New Drone Fits in Your Pocket, Flies for Two Hours

A thin tether provides enough constant power and communications to this pocket-sized surveillance drone

3 min read
CyPhy Works' New Drone Fits in Your Pocket, Flies for Two Hours
Image: CyPhy Works

Anybody who’s ever flown a rotary wing drone will look at the stats of CyPhy Works’ new Pocket Flyer drone and be amazed. It fits in your pocket and weighs a mere 80 grams. It’ll fly continuously for two hours or more, sending back high quality HD video the entire time. What’s the catch? There isn’t one, except for the clever thing that grants all of CyPhy’s UAVs their special powers: a microfilament tether that unspools the drone and keeps it constantly connected to communications and power.

CyPhy Works had the brilliant idea of bringing a thing back to robots that has (or had) a reputation of being somewhat of a crutch: a tether. Ideally, your robots would be efficient enough to be able to run on batteries, completely independently. And for ground robots, that’s usually not too hard to do, since they’re not fighting gravity all the time. With flying robots, though, endurance is a serious problem. Anything that can run on batteries (and hover) is probably only going to be aloft for 10 or perhaps 20 minutes at best.

As CyPhy Works founder and CEO Helen Greiner told IEEE Spectrum, “That’s about enough time to go into a building and find a person, and then ‘Oh, our robot went dead.’ ” The microfilament, in contrast, provides a constant source of power to your robot, so you can fly any drone that uses the system until your base station (which doesn’t have to move) runs out of power. If you’re plugged into the grid, these robots could stay aloft for days.

Power may be the primary reason why the Pocket Flyer uses a microfilament thether, but there are a bunch of other reasons why it’s a good idea. You get high definition video with no lag. You can put a lot of obstacles between you and your drone without having to worry about losing communications. And, you’re protected from malicious people trying to mess with your drone, as Greiner explains:

“If you see these wireless systems, you can look at the signal, and potentially take control of the vehicle. If you’re not that technologically sophisticated, you can actually just put noise into the environment and jam the signals, and the drone will lose control. The microfilament is impervious to that.”

The reason that a microfilament works at all in applications like these is that it unspools from the robot, and not from the base station. The robot carries a spool of 250 feet (76 meters) of wire onboard, and feeds it out as it moves forward. This way, there’s never any tension on the wire, and it can snag on stuff without affecting the performance of the robot. 

Here’s a video of a prototype of the Pocket Flyer in action: if you look closely, you can barely see the microfilament tether unspooling:

Why was it necessary for CyPhy Works to come out with a brand new drone that’s so tiny? For soldiers in the field, Greiner says, it’s all about making sure that they’re able to have a drone with them:

“We took [our robots] to special forces and IED guys, and they loved them, they wanted them, but the feedback that we also got was, ‘We’d like to carry it more easily.’ It fits into a backpack, and that’s great, but what are you going to leave out of the backpack? They need all this stuff. The Pocket Flyer fits in a cargo pants pocket. The best robot is the one you have with you. And that’s exactly what this robot will be; it’ll be the one you have with you when you get to that dangerous situation. You don’t know when to expect these things, so you’ll need this robot always with you.”

Here’s the complete kit for Pocket Flyer. For scale, note the drone and smartphone in the top pic. The drone fits entirely inside the case.

The case has the battery for the drone at the top, and a control base station that the microfilament is connected to. User control is through a touchscreen device like phone or a tablet, running whatever OS happens to be on it. The idea here is that the drone control software will just be another app on a phone or tablet that a soldier would be carrying with them anyway, so as not to add to their load. Once the drone completes its mission, you can replace the microfilament spooler cartridge with a new one, recharge the base station if necessary, and go again. By hot-swapping base station batteries, or connecting to the grid, the Pocket Flyer can keep aloft even longer.

As you can tell from the video, Pocket Flyer is currently a functional prototype, but CyPhy Works is starting on the production version now, under a U.S. Air Force Rapid Innovation Fund contract, with the hope of getting it into the hands (and pockets) of soldiers who need it as quickly as possible.

[ CyPhy Works ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less