The December 2022 issue of IEEE Spectrum is here!

Close bar

CPU, Heal Thyself

A fault-monitoring microprocessor design can save power or allow overclocking

11 min read
Illustration: Daniel Bejar
Illustration: Daniel Bejar

In the old days, computer vendors would often pull a fast one. They would tell you their system had the latest microprocessor when it actually had a cheaper, slower version running faster than the chip’s rating permitted. So the shiny, new 500-megahertz system you thought you were buying might contain only an overclocked 300-MHz CPU. But the computer worked fine; indeed, it might have operated perfectly for years, with you none the wiser. And you perhaps replaced it only because a good buy on a 1-gigahertz machine eventually came along.

How did that poor 300-MHz processor cope with such abuse? The short answer is that the manufacturer had set the clock speed low to ensure that its products would function without fault despite the inevitable variations among chips and among their different operating environments. Shady overclockers took advantage of that conservatism, inviting unpredictable failures when they eliminated the chipmaker’s prudent safety margins.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

Fourth Generation Digitizers With Easy-to-Use API

Learn about the latest generation high-performance data acquisition boards from Teledyne

1 min read

In this webinar, we explain the design principles and operation of our fourth-generation digitizers with a focus on the application programming interface (API).

Register now for this free webinar!

Keep Reading ↓Show less