COVID-19 Makes It Clear That Broadband Access Is a Human Right

The guarantees made during the pandemic should be made permanent

2 min read
Illustration: hystericalglamour
Illustration: hystericalglamour

Like clean water and electricity, broadband access has become a modern-day necessity. The spread of COVID-19 and the ensuing closure of schools and workplaces and even the need for telemedicine make this seem like a new imperative, but the idea is over a decade old. Broadband is a fundamental human right, essential in times like now, but just as essential when the world isn’t in chaos.

A decade ago, Finland declared broadband a legal right. In 2011, the United Nations issued a report [PDF] with a similar conclusion. At the time, the United States was also debating its broadband policy and a series of policy efforts that would ensure everyone had access to broadband. But decisions made by the Federal Communications Commission between 2008 and 2012 pertaining to broadband mapping, network neutrality, data caps and the very definition of broadband are now coming back to haunt the United States as cities lock themselves down to flatten the curve on COVID-19.

While some have voiced concerns about whether the strain of everyone working remotely might break the Internet, the bigger issue is that not everyone has Internet access in the first place. Actually, most U.S. residential networks are built for peak demand, and even the 20 to 40 percent increase in network traffic seen in locations hard hit by the virus won’t be enough to buckle networks.

An estimated 21 million to 42 million people in the United States don’t have physical access to broadband, and even more cannot afford it or are reliant on mobile plans with data limits. For this significant portion of our population, remote schooling and work are prohibitively expensive at best and simply not an option at worst. This number hasn’t budged significantly in the last decade, and it’s not just a problem for the United States. In Hungary, Spain, and New Zealand, a similar percentage of households also lack broadband subscriptions according to data from the Organization for Economic Co-operation and Development.

Faced with the ongoing COVID-19 outbreak, Internet service providers in the United States have already taken several steps to expand broadband access. Comcast, for example, has made its public Wi-Fi network available to anyone. The company has also expanded its Internet Essentials program—which provides a US $9.95 monthly connection and a subsidized laptop—to a larger number of people on some form of government assistance.

To those who already have access but are now facing financial uncertainty, AT&T, Comcast, and more than 200 other U.S. ISPs have pledged not to cut off subscribers who can’t pay their bills and not to charge late fees, as part of an FCC plan called Keep Americans Connected. Additionally, AT&T, Comcast, and Verizon have also promised to eliminate data caps for the near future, so customers don’t have to worry about blowing past a data limit while learning and working remotely.

It’s good to keep people connected during quarantines and social distancing, but going forward, some of these changes should become permanent. It’s not enough to say that broadband is a basic necessity; we have to push for policies that ensure companies treat it that way.

“If it wasn’t clear before this crisis, it is crystal clear now that broadband is a necessity for every aspect of modern civic and commercial life. U.S. policymakers need to treat it that way,” FCC Commissioner Jessica Rosenworcel says. “We should applaud public spirited efforts from our companies, but we shouldn’t stop there.” 

This article appears in the May 2020 print issue as “We All Deserve Broadband.”

The Conversation (0)

Metamaterials Could Solve One of 6G’s Big Problems

There’s plenty of bandwidth available if we use reconfigurable intelligent surfaces

12 min read
An illustration depicting cellphone users at street level in a city, with wireless signals reaching them via reflecting surfaces.

Ground level in a typical urban canyon, shielded by tall buildings, will be inaccessible to some 6G frequencies. Deft placement of reconfigurable intelligent surfaces [yellow] will enable the signals to pervade these areas.

Chris Philpot

For all the tumultuous revolution in wireless technology over the past several decades, there have been a couple of constants. One is the overcrowding of radio bands, and the other is the move to escape that congestion by exploiting higher and higher frequencies. And today, as engineers roll out 5G and plan for 6G wireless, they find themselves at a crossroads: After years of designing superefficient transmitters and receivers, and of compensating for the signal losses at the end points of a radio channel, they’re beginning to realize that they are approaching the practical limits of transmitter and receiver efficiency. From now on, to get high performance as we go to higher frequencies, we will need to engineer the wireless channel itself. But how can we possibly engineer and control a wireless environment, which is determined by a host of factors, many of them random and therefore unpredictable?

Perhaps the most promising solution, right now, is to use reconfigurable intelligent surfaces. These are planar structures typically ranging in size from about 100 square centimeters to about 5 square meters or more, depending on the frequency and other factors. These surfaces use advanced substances called metamaterials to reflect and refract electromagnetic waves. Thin two-dimensional metamaterials, known as metasurfaces, can be designed to sense the local electromagnetic environment and tune the wave’s key properties, such as its amplitude, phase, and polarization, as the wave is reflected or refracted by the surface. So as the waves fall on such a surface, it can alter the incident waves’ direction so as to strengthen the channel. In fact, these metasurfaces can be programmed to make these changes dynamically, reconfiguring the signal in real time in response to changes in the wireless channel. Think of reconfigurable intelligent surfaces as the next evolution of the repeater concept.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}