The December 2022 issue of IEEE Spectrum is here!

Close bar

Could Fusion Clean Up Nuclear Waste?

Physicists propose a marriage of fusion and fission reactors that could save both technologies

3 min read
Photo: Ruben Sprich/Reuters
Photo: Ruben Sprich/Reuters

What if you could help solve the nuclear waste problem and at the same time give fusion research a new raison d’être? A trio of physicists at the University of Texas at Austin have dreamed up a trick to pair nuclear fusion and fission in a way they think could open more promising futures for both technologies.

Their idea is to surround a compact, circular tokamak fusion reactor they have devised with a ring containing the most noxious waste products from nuclear power plants. Neutrons emanating from the fusion reactor would break down long-lived transuranic radio active wastes from spent fuel and turn them into much shorter-lived elements. The net effect would be to convert high-level radio active wastes containing elements like americium and curium, which need to be stored safely for 100 000 years or more—a problem that has derailed big storage projects like Yucca Mountain—into fission products, such as barium, that fully decay in hundreds of years.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less