Researchers Developing Cockroach-Inspired Robots, Cheetah-Bots

Roboticists present their bio-inspired designs -- and debate about which cockroaches are faster -- at IROS 2009.

2 min read
[youtube //www.youtube.com/v/TmxyO9-P7Ds&hl=en&fs=1& expand=1]

 

When I think about robots, I don't automatically think of cockroaches. But the little creepy crawlies were featured in several presentations at yesterday's workshop on Biologically Inspired Robotics at the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, which officially begins today in St. Louis, Missouri.

Cockroaches in fact inspire designs for small walking, running, and crawling bots, which you can check out examples of at the website of the Center for Biologically Inspired Robotics Research at Case Western Reserve University. I learned more about roach anatomy and gaits than I ever thought I'd want to know.

The highlight (at least for me) was a debate between Case Western engineering professor Roger Quinn and Singapore's Nanyang Technological University professor K.H. Low about which cockroach was faster and smarter: the North American cockroach, or the Asian cockroach.

Low claimed the Asian cockroach was faster, since he could never catch one at home, while he caught them all the time during six years of study in Canada. Quinn begged to differ, and the ensuing discussion of roach biology entertained the laptop-bedecked crowd of about 50 for several minutes.

Unfortunately no live demonstrations could be had, but Quinn seemed excited about the possibility of a race.

Biologically inspired robotics is a hot topic at this conference, with one of 16 simultaneous tracks devoted to it, and several more touching on its themes. Other tracks will hit human-robot interaction, medical robots, legged robots, and underwater robots, to name just a few.

Sangbae Kim, an assistant professor at MIT and director of MIT’s Biomimetic Robotics Lab, is looking forward moving beyond cockroach-inspired design, and even past the gecko-inspired bots he worked on while at Stanford.

Kim's research at MIT is now focusing on "hyper dynamic locomotion." Translation? Cheetah-bot.

"You see so many robots everywhere," Kim says, "especially at conferences like these. But none of the robots can follow me, at walking speed, over rough terrain, or up stairs."

Kim thinks that kind of dynamic locomotion is "really limited still," and the robots that can crawl over rough terrain are small and often go slow. So he's aiming for a bigger, legged robot that could run fast, like a cheetah.

"Not necessarily over rough terrain," he says, "but over flat and also rough" spaces. And not necessarily even a cheetah, he says, not wanting to limit his goals. Squirrels, too, have highly dynamic behavior that allows them both to run fast and to climb, actions that can only be accomplished by two very different kinds of bots so far.

It's a good reminder that robots still can't do nearly the variety of tasks that humans and animals can. But presenters and exhibitors at this conference will set out to prove how much their robots can do.

Above is one of the videos presented today featuring a cockroach-like critter bot.

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less