Coal Pollution Fatalities

Major report by U.S. National Academies provides authoritative estimates of health toll from coal power plant emissions, as well as from motor vehicles

4 min read

A report issued on Oct. 19 by the U.S. National Academies of Science, Engineering, and Medicine estimates damages to public health and the immediate physical environment from power plant and vehicular emissions. The overall effect is to reduce estimates of how many deaths result from power plant pollution by a factor of three or four. But the numbers are still shockingly high, and total estimated economic damages are very substantial. The national cost of power plant emissions in 2005 is put at $62 billion, and the damage from automotive emissions—from light vehicles, as well as medium- and heavy-duty trucks—at $56 billion. Given the report's valuation of a premature human death at $6 million, those estimates imply that about 10,000 people die each year from exposure to coal power plant emissions, and about 10,000 from vehicular emissions.

Earlier in this decade, when estimates of coal-pollution fatalities of close to 30,000 came to my attention in an excellent book called Coal, I found them hard to credit. I traced them to a 2000 report prepared for the Clean Air Task Force by experts connected with Harvard University and Massachusetts General Hospital ("Death, Disease, and Dirty Power”). Those experts stood by their claims, and leading public health experts independent of the study vouched for its credibility. The clincher came from a man who had been in charge of regulatory enforcement at the U.S. Environmental Protection Agency in the Clinton Administration: Eric Schaeffer pointed out that if you looked at the Bush EPA's estimates of how many lives would be saved by stronger regulations, it followed that tens of thousands were dying annually from coal plant pollution, and not merely thousands.

Maureen L. Cropper, an economist at the University of Maryland (College Park) and Resources for the Future (Washington D.C.) who co-chaired the National Academies‘ panel, says because of improved methodology—and perhaps also because of differences in data sets, baselines, and comparisons—the National Academies' estimates of fatalities are significantly lower than EPA’s. They are lower by a factor of about four, even though the  Academies took a wider range of damage into account, she notes. At the same time, acknowledging that total estimated damages are still high, Cropper feels that tightening air regulations beyond what is anticipated by the 1990 Clean Air Amendments  probably is warranted.

Arguably, the implications go beyond that. The report's estimate of coal-related damages equates to 3.2 cents per kilowatt hour. That's a lot. But even so, that only takes immediate health and environmental consequences into account. It does not take in the impact of coal on global greenhouse emissions. What if they also are brought into the picture, if only qualitatively?

The National Academies report is an estimate of what micro-economists call "externalities" —costs of an economic activity that do not show up in the price of the activity as determined by the free-market interplay of supply and demand. Costs to public health and to the immediate physical environment are relatively easy to monetize (though the methods involved are prodigiously complex). Estimates of the possible adverse impacts from global warming are much harder to estimate, and such estimates are much more controversial. So it's easy to see why the Academies did not include climate costs in their analysis.

But as we all know, coal-fired power plants account for a third or two fifths of U.S. greenhouse gas emissions. If, pursuant to Cropper's reasoning, the United States were to penalize coal power to account for its impacts on public health, a strong impact on carbon emissions also is to be expected.

Definitive up-to-date estimates of coal generating costs are surprisingly hard to locate, but generally they are put in the vicinity of 5 or 6 cents per kilowatt hour. So if one were to tax up the cost of coal-generated electricity by 3.2 cents to compensate for bad heath impacts, the net economic effect would be to increase the cost of coal-generated electricity by 50 percent or more. At that level, unsubsidized nuclear-generated electricity would be competitive to coal and so would wind; natural gas would be highly competitive. A 50 percent tax on coal-generated electricity, in short, would lead to rapid replacement of the country's dirtiest coal plants by brand spanking new gas and nuclear plants, and wind farms. It would be like replacing a 1952 Plymouth--a great car in its day--by a Toyota Prius.

This course of action, let it be said by way of fair disclosure, is exactly the strategy I proposed in a book several years ago. (The third chapter is devoted to the human costs of coal combustion.) Though the book may be ready for the ash can of history, its basic idea is alive and kicking. What gives the idea of replacing the dirtest U.S. coal plants with zero-carbon and low-carbon generation is this: According to the Academies' findings, 10 percent of the 406 coal-fired plants it examined account for 43 percent of the coal sector's damages to the public good; the least damaging 50 percent of the plants account for just 12 percent of the damage.

So if the United States were to shut down the half of its coal-fired plants that are the dirtiest, the immediate effect would be to save close to 9,000 lives and cut the country's greenhouse gas emissions by 20 percent or more—that is, more than the Obama administration's current action plan foresees for the economy as a whole in the next ten years.

 

 

 

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less